ppo-SnowballTarget / README.md
lambdavi's picture
Update README.md
7e7dde2 verified
|
raw
history blame
2.44 kB
metadata
library_name: ml-agents
tags:
  - SnowballTarget
  - deep-reinforcement-learning
  - reinforcement-learning
  - ML-Agents-SnowballTarget

ppo Agent playing SnowballTarget

This is a trained model of a ppo agent playing SnowballTarget using the Unity ML-Agents Library.

Usage (with ML-Agents)

The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/

We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:

Resume the training

mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume

Watch your Agent play

You can watch your agent playing directly in your browser

  1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
  2. Step 1: Find your model_id: lambdavi/ppo-SnowballTarget
  3. Step 2: Select your .nn /.onnx file
  4. Click on Watch the agent play 👀

Hyperparams used:

SnowballTarget: trainer_type: ppo hyperparameters: batch_size: 128 buffer_size: 2048 learning_rate: 0.005 beta: 0.005 epsilon: 0.2 lambd: 0.95 num_epoch: 5 shared_critic: False learning_rate_schedule: linear beta_schedule: linear epsilon_schedule: linear checkpoint_interval: 50000 network_settings: normalize: False hidden_units: 256 num_layers: 2 vis_encode_type: simple memory: None goal_conditioning_type: hyper deterministic: False reward_signals: extrinsic: gamma: 0.99 strength: 1.0 network_settings: normalize: False hidden_units: 128 num_layers: 2 vis_encode_type: simple memory: None goal_conditioning_type: hyper deterministic: False init_path: None keep_checkpoints: 10 even_checkpoints: False max_steps: 500000 time_horizon: 64 summary_freq: 10000 threaded: True self_play: None behavioral_cloning: None