metadata
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
widget:
- text: >-
Atlanta Games silver medal winner Edwards has called on other leading
athletes to take part in the Sarajevo meeting--a goodwill gesture towards
Bosnia as it recovers from the war in the Balkans--two days after the
grand prix final in Milan.
- text: >-
Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M.
Gatting 83), Hampshire 232 and 109-5.
- text: >-
Poland's Foreign Minister Dariusz Rosati will visit Yugoslavia on
September 3 and 4 to revive a dialogue between the two governments which
was effectively frozen in 1992,PAP news agency reported on Friday.
- text: >-
The authorities are apparently extremely afraid of any political and
social discontent," said Xiao,in Manila to attend an Amnesty International
conference on human rights in China.
- text: >-
American Nate Miller successfully defended his WBA cruiserweight title
when he knocked out compatriot James Heath in the seventh round of their
bout on Saturday.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: Unknown
type: conll2003
split: eval
metrics:
- type: f1
value: 0.9550004205568171
name: F1
- type: precision
value: 0.9542780299209951
name: Precision
- type: recall
value: 0.9557239057239058
name: Recall
SpanMarker
This is a SpanMarker model trained on the conll2003 dataset that can be used for Named Entity Recognition.
Model Details
Important Note: I used the Tokenizer from "roberta-base".
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
+tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
+model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
Model Description
- Model Type: SpanMarker
- Maximum Sequence Length: 512 tokens
- Maximum Entity Length: 8 words
- Training Dataset: conll2003
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
LOC | "Germany", "BRUSSELS", "Britain" |
MISC | "German", "British", "EU-wide" |
ORG | "European Commission", "EU", "European Union" |
PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
model.set_tokenizer(tokenizer)
# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 14.5019 | 113 |
Entities per sentence | 0 | 1.6736 | 20 |
Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training Results
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
1.0 | 883 | 0.0123 | 0.9293 | 0.9274 | 0.9284 | 0.9848 |
2.0 | 1766 | 0.0089 | 0.9412 | 0.9456 | 0.9434 | 0.9882 |
3.0 | 2649 | 0.0077 | 0.9499 | 0.9505 | 0.9502 | 0.9893 |
4.0 | 3532 | 0.0070 | 0.9527 | 0.9537 | 0.9532 | 0.9900 |
5.0 | 4415 | 0.0068 | 0.9543 | 0.9557 | 0.9550 | 0.9902 |
Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.0
- PyTorch: 2.0.0
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}