Edit model card

lamia6001/xlnet-base

This model is a fine-tuned version of xlnet/xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1395
  • Train Accuracy: 0.936
  • Validation Loss: 0.1985
  • Validation Accuracy: 0.9360
  • Train Precision: 0.9386
  • Train Recall: 0.936
  • Train F1: 0.9353
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Train Precision Train Recall Train F1 Epoch
0.6647 0.9205 0.2528 0.9205 0.9226 0.9205 0.9200 0
0.1997 0.931 0.1945 0.9310 0.9330 0.931 0.9305 1
0.1395 0.936 0.1985 0.9360 0.9386 0.936 0.9353 2

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lamia6001/xlnet-base

Finetuned
(61)
this model