File size: 46,015 Bytes
1ff81a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 |
{
"cells": [
{
"cell_type": "markdown",
"id": "3288987d",
"metadata": {},
"source": [
"# X-LoRA Inference: Gemma-7b model for molecular design \n"
]
},
{
"cell_type": "markdown",
"id": "25beb240-1ae1-4537-9cc6-da621862d0bd",
"metadata": {},
"source": [
"### Helper functions "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2c18b20-b1a9-4f3e-ae84-2a551e2ed69c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"import random\n",
"\n",
"import torch\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"import transformers\n",
"from datasets import load_dataset\n",
"from datasets import IterableDataset\n",
"\n",
"from transformers import Trainer\n",
"from transformers import TrainingArguments\n",
"from transformers import DataCollatorWithPadding\n",
"from transformers import TrainerCallback\n",
"from transformers import AutoConfig\n",
"from transformers import BitsAndBytesConfig\n",
"\n",
"from peft import LoraConfig, get_peft_model\n",
"from torch.utils.data import Dataset\n",
"from transformers import get_linear_schedule_with_warmup\n",
"from accelerate import infer_auto_device_map\n",
"import math\n",
"import numpy as np\n",
"import unidecode\n",
"import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
"import peft\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"device='cuda'\n",
"\n",
"def params(model):\n",
" model_parameters = filter(lambda p: p.requires_grad, model.parameters())\n",
" params = sum([np.prod(p.size()) for p in model_parameters])\n",
"\n",
" print(\"Number of model arameters: \", params) \n",
"\n",
"def generate_response (model,tokenizer,text_input=\"Biology offers amazing\",\n",
" num_return_sequences=1,\n",
" temperature=1., #the higher the temperature, the more creative the model becomes\n",
" max_new_tokens=127,\n",
" num_beams=1,\n",
" top_k = 50,\n",
" top_p =0.9,repetition_penalty=1.,eos_token_id=107,verbatim=False,\n",
" exponential_decay_length_penalty_fac=None,add_special_tokens =True, eos_token=None, \n",
" ):\n",
"\n",
" if eos_token==None:\n",
" eos_token=tokenizer('<end_of_turn>', add_special_tokens =False, ) ['input_ids'][0]\n",
" \n",
" inputs = tokenizer(text_input, \n",
" add_special_tokens =add_special_tokens, \n",
" return_tensors ='pt').to(device)\n",
" if verbatim:\n",
" print (\"Length of input, tokenized: \", inputs[\"input_ids\"].shape, inputs[\"input_ids\"],\"eos_token: \", eos_token)\n",
" with torch.no_grad():\n",
" outputs = model.generate(#input_ids=inputs.to(device), \n",
" input_ids = inputs[\"input_ids\"],\n",
" attention_mask = inputs[\"attention_mask\"] , # This is usually done automatically by the tokenizer\n",
" max_new_tokens=max_new_tokens,\n",
" temperature=temperature, #value used to modulate the next token probabilities.\n",
" num_beams=num_beams,\n",
" top_k = top_k,\n",
" top_p = top_p,\n",
" num_return_sequences = num_return_sequences,\n",
" eos_token_id=eos_token,\n",
" pad_token_id = eos_token,\n",
" do_sample =True, \n",
" repetition_penalty=repetition_penalty, \n",
" )\n",
"\n",
" return tokenizer.batch_decode(outputs[:,inputs[\"input_ids\"].shape[1]:].detach().cpu().numpy(), skip_special_tokens=True)\n",
"\n",
"def generate_answer (model,tokenizer,system='You a helpful assistant. You are familiar with materials science. ',\n",
" q='What is spider silk in the context of bioinspired materials?',\n",
" repetition_penalty=1.1,\n",
" top_p=0.1, top_k=32, \n",
" temperature=.6,max_new_tokens=512, verbatim=False, eos_token=None,add_special_tokens=True,\n",
" prepend_response='', messages=[],\n",
" ):\n",
"\n",
" if eos_token==None:\n",
" eos_token= tokenizer.eos_token_id\n",
" \n",
" if system==None:\n",
" messages.append ({\"role\": \"user\", \"content\": q} )\n",
" else:\n",
" messages.append ({\"role\": \"user\", \"content\": system+q})\n",
" \n",
" txt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, )\n",
" txt=txt+prepend_response\n",
" \n",
" output_text=generate_response (model,tokenizer,text_input=txt,eos_token_id=eos_token,\n",
" num_return_sequences=1, repetition_penalty=repetition_penalty,\n",
" top_p=top_p, top_k=top_k, add_special_tokens =add_special_tokens,\n",
" \n",
" temperature=temperature,max_new_tokens=max_new_tokens, verbatim=verbatim, \n",
" \n",
" )\n",
" return ( output_text[0] )"
]
},
{
"cell_type": "markdown",
"id": "75d89d27-8386-4859-a36e-ce4842415b59",
"metadata": {},
"source": [
"### Load X-LoRA Gemma model "
]
},
{
"cell_type": "raw",
"id": "cd1b66f6-1fe1-4b2c-9309-fe01d34d7d54",
"metadata": {},
"source": [
"https://github.com/EricLBuehler/xlora"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12848c38-cc0c-41c7-bf04-9856730458df",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from xlora.xlora_utils import load_model \n",
"\n",
"XLoRa_model_name = 'lamm-mit/x-lora-gemma-7b'\n",
"\n",
"model, tokenizer=load_model(model_name = XLoRa_model_name, \n",
" device='cuda:0',\n",
" use_flash_attention_2=True, \n",
" dtype=torch.bfloat16,\n",
" )\n",
"eos_token_id= tokenizer('<end_of_turn>', add_special_tokens=False, ) ['input_ids'][0]\n"
]
},
{
"cell_type": "markdown",
"id": "b197ffd5-7752-4081-9227-c46a485afeec",
"metadata": {},
"source": [
"### Inference using Guidance "
]
},
{
"cell_type": "raw",
"id": "f7009898-17a9-468a-970a-59d7c80553ca",
"metadata": {},
"source": [
"https://github.com/guidance-ai/guidance"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80b62bf2-a424-4858-a321-f55e3327b070",
"metadata": {},
"outputs": [],
"source": [
"from guidance import models\n",
"from guidance import gen, select, system, user, assistant, newline\n",
"from IPython.display import display, Markdown\n",
"\n",
"gpt = models.TransformersChat(model=model, tokenizer=tokenizer)\n",
"gpt_question_asker = gpt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1cb5a867-a127-45c2-b75b-35883a78930b",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"with user(): \n",
" lm =gpt + f\"\"\"List the most important biomolecules used in biological materials to make polymers with multifunctional qualities.\"\"\" \n",
"\n",
"with assistant(): \n",
" lm+=\"[\"+gen('res1', max_tokens=1024)"
]
},
{
"cell_type": "markdown",
"id": "a841c58c-bded-4741-80df-66ca434bfac0",
"metadata": {},
"source": [
"### Inference using Hugging Face generate functions "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26a27dc2-4e28-4fee-b37c-446281cd23da",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"system_prompt='You are an expert in biological molecular engineering. '\n",
"q=\"\"\"\n",
"What are potential molecular engineering approaches to create better materials? Name specific molecules of interest.\n",
"\"\"\"\n",
"\n",
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
" q=q,\n",
" repetition_penalty=1., top_p=0.9, top_k=256, \n",
" temperature=.5,max_new_tokens=512, verbatim=False, \n",
" )\n",
"\n",
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82d162fe-6149-44d4-afbe-63213b10f183",
"metadata": {},
"outputs": [],
"source": [
"system_prompt='You are an expert in biological molecular engineering. '\n",
"q=\"\"\"\n",
"List the most important biomolecules used in biological materials to make polymers with multifunctional qualities.\n",
"\"\"\"\n",
"messages=[]\n",
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
" q=q, repetition_penalty=1., top_p=0.9, top_k=256, temperature=.5,max_new_tokens=512, verbatim=False,messages=messages )\n",
"\n",
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))\n",
"messages.append ({\"role\": \"assistant\", \"content\": res} )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9ad8c01-7cfd-4017-a8af-0b72b4ea25fe",
"metadata": {},
"outputs": [],
"source": [
"system_prompt=None\n",
"q=\"\"\"\n",
"How does chitin form a material, specifically in terms of molecular interactions? \n",
"\"\"\" \n",
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
" q=q, repetition_penalty=1., top_p=0.9, top_k=256, temperature=.1,max_new_tokens=512, verbatim=False,messages=messages,\n",
" )\n",
"\n",
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))\n",
"messages.append ({\"role\": \"assistant\", \"content\": res} )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f520fd9-0d06-4971-9b58-74d8d2c3e2ef",
"metadata": {},
"outputs": [],
"source": [
"system_prompt=None\n",
"q=\"\"\"\n",
"Thank you. What are potential chemical modifications of N-acetylglucosamine units that would improve mechanical properties?\n",
"\"\"\" \n",
"res=generate_answer (model, tokenizer,system=system_prompt,\n",
" q=q, repetition_penalty=1., top_p=0.9, top_k=256, temperature=.1,max_new_tokens=512, verbatim=False,messages=messages,\n",
" )\n",
"\n",
"display (Markdown (\"## X-LoRA:\\n\\n\"+res))\n",
"messages.append ({\"role\": \"assistant\", \"content\": res} )"
]
},
{
"cell_type": "markdown",
"id": "ce5a2293-b66d-4ef6-987e-451dc1a92621",
"metadata": {},
"source": [
"### Molecule design examples"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e547bed4-da94-48c7-b9dd-00da7732ef20",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"\n",
"df_smiles=pd.read_csv ('./QM9.csv')\n",
"SMILES_LIST=list (df_smiles['smiles'])\n",
"\n",
"X = df_smiles.iloc[:, 0].values.reshape(-1, 1) # Input feature, reshaped for compatibility\n",
"y = df_smiles.iloc[:, 1:] # Target features\n",
"\n",
"# Scaling the target features\n",
"scaler = MinMaxScaler()\n",
"y_scaled = scaler.fit_transform(y)\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"X_train, X_test, y_train, y_test= train_test_split(X, y_scaled, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "44c43109-0606-42d2-a1b6-01278ff6432f",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.metrics import mean_squared_error\n",
"labels = [\"mu\", \"alpha\", \"homo\", \"lumo\", \"gap\", \"r2\", \"zpve\", \"cv\", \"u0\", \"u298\", \"h298\", \"g298\"]\n",
"\n",
"def return_str(vals=np.array ([.1, .5, .6, 2.])):\n",
" ch=''\n",
" for i in range (len (vals)):\n",
" ch=ch+f'{vals[i]:1.3f},'\n",
" \n",
" return ch[:-1] \n",
"\n",
"def extract_start_and_end(string_input, start_token='[', end_token=']'):\n",
" \"\"\"\n",
" Extracts the substring from 'string_input' that is enclosed between the first occurrence of\n",
" 'start_token' and the last occurrence of 'end_token'.\n",
"\n",
" Args:\n",
" string_input (str): The string from which to extract the substring.\n",
" start_token (str): The starting delimiter. Default is '['.\n",
" end_token (str): The ending delimiter. Default is ']'.\n",
"\n",
" Returns:\n",
" str: The extracted substring. If 'start_token' or 'end_token' is not found, returns an empty string.\n",
" \"\"\"\n",
" # Find the index of the first occurrence of start_token\n",
" i = string_input.find(start_token)\n",
" # Find the index of the last occurrence of end_token\n",
" j = string_input.rfind(end_token)\n",
"\n",
" # Check if both tokens are found and i < j to ensure proper enclosure\n",
" if i == -1 or j == -1 or i >= j:\n",
" return \"\"\n",
" else:\n",
" # Extract and return the content between the first start_token and the last end_token\n",
" return string_input[i + 1:j]\n",
"\n",
"def is_SMILES_novel (SMILES, SMILES_LIST=None):\n",
"\n",
" if SMILES_LIST !=None:\n",
" \n",
" if SMILES not in SMILES_LIST:\n",
" is_novel=True\n",
" else:\n",
" is_novel=False\n",
" else:\n",
" is_novel=None\n",
" return is_novel\n",
" \n",
"def visualize_SMILES (smiles_code, dir_path='./' , root='', sample_count=0):\n",
" molecule = Chem.MolFromSmiles(smiles_code)\n",
" \n",
" # Generate an image of the molecule\n",
" molecule_image = Draw.MolToImage(molecule)\n",
" \n",
" # Display the image directly in Jupyter Notebook\n",
" display(molecule_image)\n",
" \n",
" image_path=f\"{dir_path}/SMILES_{sample_count}_{root}_molecule_image.png\"\n",
" molecule_image.save(image_path)\n",
"\n",
" return image_path\n",
"\n",
"\n",
"def design_from_target(\n",
" model,\n",
" tokenizer,\n",
" target,\n",
" temperature=0.1,\n",
" num_beams=1,\n",
" top_k=50,\n",
" top_p=0.95,\n",
" repetition_penalty=1.0,\n",
" messages=[]\n",
"):\n",
" # Format the target line for molecular property generation\n",
" line = f'GenerateMolecularProperties<{return_str(target)}>'\n",
" \n",
" # Add the line to the message history\n",
" messages.append({\"role\": \"user\", \"content\": line})\n",
" \n",
" # Apply chat template with optional tokenization\n",
" line = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
" \n",
" # Generate response with specified parameters\n",
" result = generate_response(\n",
" model,\n",
" tokenizer,\n",
" text_input=line,\n",
" num_return_sequences=1,\n",
" temperature=temperature,\n",
" top_k=top_k,\n",
" top_p=top_p,\n",
" max_new_tokens=256\n",
" )[0]\n",
" \n",
" return result\n",
"\n",
"def properties_from_SMILES(\n",
" model,\n",
" tokenizer,\n",
" target,\n",
" temperature=0.1,\n",
" top_k=128,\n",
" top_p=0.9,\n",
" num_beams=1,\n",
" repetition_penalty=1.0\n",
"):\n",
" # Format the target line for molecular property calculation\n",
" line = f'CalculateMolecularProperties<{target}>'\n",
" \n",
" # Initialize messages and add the formatted line\n",
" messages = [{\"role\": \"user\", \"content\": line}]\n",
" \n",
" # Apply chat template with optional tokenization\n",
" line = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
" \n",
" # Generate response with specified parameters\n",
" result = generate_response(\n",
" model,\n",
" tokenizer,\n",
" text_input=line,\n",
" num_return_sequences=1,\n",
" temperature=temperature,\n",
" top_k=top_k,\n",
" top_p=top_p,\n",
" max_new_tokens=256\n",
" )[0]\n",
" \n",
" # Extract relevant part of the result and convert to float list\n",
" result = extract_start_and_end(result, start_token='[', end_token=']')\n",
" return [float(i) for i in result.split(',')]\n",
"\n",
" \n",
"def avg_properties_from_SMILES (model, tokenizer, SMILES ='O=C(N)C1OC(CO)C(O)C(O)C1O', SMILES_dir='./',\n",
" temperature=0.01, top_k=50,top_p=0.95, num_beams=1, repetition_penalty=1.,\n",
" labels=None, N_prop=6, plot_results=True):\n",
" if not os.path.exists(SMILES_dir):\n",
" os.makedirs(SMILES_dir) \n",
" properties=[]\n",
" if labels==None and plot_results:\n",
" labels= ['mu',\n",
" 'alpha',\n",
" 'homo',\n",
" 'lumo',\n",
" 'gap',\n",
" 'r2',\n",
" 'zpve',\n",
" 'cv',\n",
" 'u0',\n",
" 'u298',\n",
" 'h298',\n",
" 'g298']\n",
" successful=0\n",
" for i in tqdm(range (N_prop)):\n",
" \n",
" try:\n",
" _prop=properties_from_SMILES (model, tokenizer, SMILES,temperature=temperature, top_k=top_k,top_p=top_p,\n",
" num_beams=num_beams, repetition_penalty=repetition_penalty,\n",
" )\n",
" if len (_prop)==len (labels):\n",
" \n",
" properties.append(np.array( _prop) )\n",
" successful+=1\n",
" except:\n",
" print (end=\"\")\n",
" \n",
" all_properties = np.array(properties)\n",
" \n",
" # Calculate mean and standard deviation for each property\n",
" means = np.mean(all_properties, axis=0)\n",
" std_devs = np.std(all_properties, axis=0)\n",
" \n",
" # Labels for the x-axis\n",
" if plot_results: \n",
" # Creating the plot with error bars\n",
" plt.figure(figsize=(6, 4))\n",
" plt.errorbar(labels, means, yerr=std_devs, fmt='o', ecolor='red', capsize=5, capthick=2, marker='s', color='blue')\n",
" plt.xticks(rotation=45)\n",
" plt.xlabel('Property')\n",
" plt.ylabel('Value')\n",
" plt.title('Average Properties with Error Bars')\n",
" plt.tight_layout()\n",
" plt.savefig(SMILES_dir + f\"avg_prop_{SMILES}.svg\", format=\"svg\")\n",
" \n",
" plt.show()\n",
" print (f\"Successful attempts: {successful}/{N_prop}\")\n",
" \n",
" return means, std_devs \n",
"\n",
"def is_valid_smiles(smiles):\n",
" # This function tries to create a molecule object from a SMILES string.\n",
" # If the molecule object is created successfully and is not None, the SMILES is valid.\n",
" mol = Chem.MolFromSmiles(smiles)\n",
" return mol is not None\n",
" \n",
"def design_molecule(model, tokenizer, target=None, temperature=0.1,\n",
" num_beams=1,top_k=50,top_p=0.95, repetition_penalty=1.,\n",
" SMILES_LIST=None, dir_path='./', messages=[],N_attempts_for_forward=1):\n",
"\n",
" if not os.path.exists(dir_path):\n",
" os.makedirs(dir_path)\n",
" if target.any()==None:\n",
" target = np.random.rand(12)\n",
" \n",
" try:\n",
" SMILES=design_from_target (model, tokenizer, target, messages=messages)\n",
" except:\n",
" SMILES=None\n",
" print (\"Generation failed.\")\n",
"\n",
" is_novel=is_SMILES_novel (SMILES, SMILES_LIST)\n",
" print (\"Result: \", SMILES, \"is novel: \", is_novel, \"is valid: \", is_valid_smiles(SMILES))\n",
" try:\n",
" visualize_SMILES (SMILES, dir_path=dir_path)\n",
" except:\n",
" print (\"Vis failed.\")\n",
"\n",
" try:\n",
" if N_attempts_for_forward==1:\n",
" predicted = properties_from_SMILES(model, tokenizer, SMILES,temperature_pred, num_beams,\n",
" top_k, top_p, repetition_penalty)\n",
" else:\n",
" predicted,_=avg_properties_from_SMILES(model, tokenizer, SMILES, SMILES_dir=SMILES_dir,\n",
" temperature=temperature_pred, top_k=top_k,top_p=top_p, num_beams=num_beams, repetition_penalty=repetition_penalty,\n",
" labels=labels, N_prop=N_attempts_for_forward, plot_results=False)\n",
"\n",
" sns.set_style(\"whitegrid\")\n",
" plt.gcf().set_facecolor('white')\n",
" # Assuming GT_res and predictions are your data arrays/lists for Ground Truth and Predictions respectively\n",
" \n",
" x = np.arange(len(labels)) # Label locations\n",
" width = 0.35 # Width of the bars\n",
" \n",
" fig, ax = plt.subplots(figsize=(9, 5))\n",
" rects1 = ax.bar(x - width/2, target, width, label='Target')\n",
" rects2 = ax.bar(x + width/2, predicted, width, label='Predicted properties')\n",
" \n",
" # Add some text for labels, title and custom x-axis tick labels, etc.\n",
" ax.set_ylabel('Values')\n",
" ax.set_title('Comparison of Target and Predicted Properties')\n",
" ax.set_xticks(x)\n",
" ax.set_xticklabels(labels, rotation=45, ha=\"right\")\n",
" ax.legend()\n",
"\n",
" except:\n",
" print(\"Forward anaysis failed.\")\n",
" return SMILES, is_novel\n",
"\n",
"def design_molecule_loop(model, tokenizer, target=None, temperature_gen=0.3,temperature_pred=0.01, SMILES_LIST=None,\n",
" top_k=50, top_p=0.95, repetition_penalty=1., num_beams=1,update_primer_with_better_draft=False,\n",
" threshold=0.01, N_max=100, dir_path='./',lower_bound = 0.0,remove_duplicates=True,\n",
" upper_bound = 0.1,sample_count=0, messages=[], N_attempts_for_forward=1, set_opt=None):\n",
"\n",
" mse_smallest_current=9999\n",
" if not os.path.exists(dir_path):\n",
" os.makedirs(dir_path)\n",
" if target is None or not target.any():\n",
" target = np.random.rand(12)\n",
"\n",
" if len (messages) >0:\n",
" print (\"Using primed generation:\\n\", messages)\n",
" \n",
" records = [] # To store SMILES, properties, and MSE\n",
" for iteration in range(N_max):\n",
" try:\n",
" print (f\">>> Iteration={iteration}\")\n",
" original_messages=copy.deepcopy (messages)\n",
"\n",
" SMILES = design_from_target(model, tokenizer, target, temperature_gen, num_beams,\n",
" top_k, top_p, repetition_penalty, messages=original_messages)\n",
" is_novel=is_SMILES_novel (SMILES, SMILES_LIST)\n",
"\n",
" if is_novel and is_valid_smiles(SMILES):\n",
" print (f\"{SMILES} is novel: {is_novel}\", \"is valid: \", {is_valid_smiles(SMILES)})\n",
" if N_attempts_for_forward==1:\n",
" predicted = properties_from_SMILES(model, tokenizer, SMILES,temperature_pred, num_beams,\n",
" top_k, top_p, repetition_penalty)\n",
" else:\n",
" predicted,_=avg_properties_from_SMILES(model, tokenizer, SMILES, SMILES_dir=dir_path,\n",
" temperature=temperature_pred, top_k=top_k,top_p=top_p, repetition_penalty=repetition_penalty,\n",
" labels=labels, N_prop=N_attempts_for_forward, plot_results=False)\n",
"\n",
" if set_opt==None:\n",
" mse = mean_squared_error(target, predicted)\n",
" else:\n",
" mse = mean_squared_error(target[set_opt], predicted[set_opt])\n",
" if mse<mse_smallest_current:\n",
" mse_smallest_current=mse\n",
" if update_primer_with_better_draft:\n",
" messages=prime_messages (SMILES, predicted , N=1)\n",
" print (\"Smaller MSE found, updated messages primer! Messages: \", messages,\n",
" f\"\\n\\nCurrent MSE: {mse}\")\n",
" \n",
" records.append((SMILES, predicted, mse, is_novel))\n",
" \n",
" print (f\">>>Iteration={iteration}, MSE={mse} for SMILES={SMILES}, novel={is_novel}\")\n",
" if mse < threshold:\n",
" print(f\"Threshold met at iteration {iteration+1}\")\n",
" break\n",
" else:\n",
" print (f\"{SMILES} is not novel or not valid, validity: {is_valid_smiles(SMILES)}.\")\n",
" except Exception as e:\n",
" print(f\"Error during iteration {iteration+1}: {e}\")\n",
" continue\n",
"\n",
" # Sorting records based on MSE (most accurate first)\n",
" records.sort(key=lambda x: x[2])\n",
"\n",
" # Visualizing the best performing molecule\n",
" best_SMILES, best_predicted, best_mse, is_novel = records[0]\n",
"\n",
" print (\"Best SILES: \", best_SMILES)\n",
" try:\n",
" print (f\"{best_SMILES} is novel: {is_novel}\")\n",
" \n",
" sns.set_style(\"whitegrid\")\n",
" \n",
" visualize_pred_vs_target (target, best_predicted, labels, dir_path=dir_path, best_SMILES=best_SMILES,sample_count=0)\n",
" \n",
" print(f\"Process completed. Results saved to {csv_path}.\") \n",
" visualize_SMILES(best_SMILES, dir_path=dir_path, root=f'{target}_BEST')\n",
"\n",
" print(f\"Compute molecular structure, UFF eq, Gasteiger, etc.\") \n",
" \n",
" compute_gasteiger (best_SMILES, SMILES_dir=dir_path, target= np.array(best_predicted))\n",
"\n",
" mol = Chem.MolFromSmiles(best_SMILES)\n",
" inchi_str = Chem.MolToInchi(mol)\n",
" print(f\"InChI String of {best_SMILES}:\", inchi_str)\n",
" \n",
" \n",
" except Exception as e:\n",
" print(f\"Processing/visualization failed for {best_SMILES}: {e}\")\n",
"\n",
" # Writing records to a CSV file\n",
" df = pd.DataFrame(records, columns=['SMILES', 'Predicted Properties', 'MSE', 'is_novel'])\n",
" csv_path = os.path.join(dir_path, 'SMILES_designs.csv')\n",
" df.to_csv(csv_path, index=False)\n",
"\n",
" # Plot MSE against the index (which now corresponds to the ranking)\n",
" plt.figure(figsize=(10, 8)) # Adjust the size as needed\n",
" plt.plot(df['SMILES'], df['MSE'], 'o', markersize=5) # 'o' for circular markers\n",
" \n",
" # Adding labels for each point with the SMILES string\n",
" for i, txt in enumerate(df['SMILES']):\n",
" plt.annotate(txt, (i, df['MSE'].iloc[i]), fontsize=8, rotation=45, ha='right')\n",
" \n",
" visualize_over_SMILES (df,N_max=N_max,SMILES_dir=SMILES_dir,\n",
" lower_bound = lower_bound,remove_duplicates=remove_duplicates,\n",
" upper_bound = upper_bound, target=target)\n",
" return df \n",
"\n",
"from rdkit import Chem\n",
"from rdkit.Chem import Draw\n",
"import os\n",
"\n",
"def visualize_smiles_and_save(smiles_list, per_row=4, dir_path='./', root=''):\n",
" \"\"\"\n",
" Visualizes a list of molecules from their SMILES strings with labels, checks for validity, \n",
" and saves the visualization as an SVG file.\n",
" \n",
" Parameters:\n",
" - smiles_list: List of SMILES strings to visualize.\n",
" - per_row: Number of molecule images per row in the assembly.\n",
" - dir_path: Directory path where the SVG file will be saved.\n",
" \"\"\"\n",
" if not os.path.exists(dir_path):\n",
" os.makedirs(dir_path)\n",
" valid_molecules = []\n",
" valid_smiles = [] # To store valid SMILES strings for labeling\n",
" for smile in smiles_list:\n",
" mol = Chem.MolFromSmiles(smile)\n",
" if mol: # If the molecule is valid\n",
" valid_molecules.append(mol)\n",
" valid_smiles.append(smile) # Add the valid SMILES string\n",
" \n",
" # Proceed only if there are valid molecules\n",
" if not valid_molecules:\n",
" print(\"No valid molecules found in the provided SMILES strings.\")\n",
" return\n",
" \n",
" # Ensure the directory exists\n",
" if not os.path.exists(dir_path):\n",
" os.makedirs(dir_path)\n",
" \n",
" # Define the SVG file path\n",
" svg_file_path = os.path.join(dir_path, f'molecules_with_labels_{root}.svg')\n",
" \n",
" # Use RDKit to draw the molecules grid with labels\n",
" fig = Draw.MolsToGridImage(valid_molecules, molsPerRow=per_row, subImgSize=(200, 200), \n",
" legends=valid_smiles, useSVG=True)\n",
" \n",
" # Saving the SVG content to a file\n",
" with open(svg_file_path, 'w') as svg_file:\n",
" svg_file.write(fig.data)\n",
" display (fig)\n",
" \n",
" print(f\"Visualization saved as SVG at: {svg_file_path}\")\n",
"\n",
" return valid_smiles \n",
"\n",
"def plot_MSE_over_SMILES (df_design,N_max=24,\n",
" lower_bound = 0.0,\n",
" upper_bound = 0.08, SMILES_dir='./', target='', ):\n",
" \n",
" if not os.path.exists(SMILES_dir):\n",
" os.makedirs(SMILES_dir) \n",
" df_sorted = df_design[:N_max].sort_values('MSE',ascending=False).reset_index(drop=True)\n",
"\n",
" \n",
" df_plot=df_sorted[(df_sorted['MSE'] > lower_bound) & (df_sorted['MSE'] < upper_bound)]\n",
" \n",
" # Plot MSE against the index (which now corresponds to the ranking)\n",
" fig, ax = plt.subplots(figsize=(8, 7))\n",
" plt.plot(df_plot['SMILES'], df_plot['MSE'], 'o-', markersize=5, ) # 'o' for circular markers\n",
" \n",
" # Improving the plot aesthetics\n",
" plt.xticks(rotation=90) # Rotate the x-axis labels for better readability\n",
" plt.xlabel('Molecule SMILES')\n",
" plt.ylabel('MSE')\n",
" #plt.title('Ordered from Best to Worst')\n",
" plt.tight_layout() # Adjust the layout to make room for the rotated x-axis labels\n",
" plt.savefig(SMILES_dir+f'SMILES_over_MSE_{target}.svg', format='svg')\n",
" plt.show()\n",
" \n",
"def visualize_over_SMILES (df_design,N_max=24,per_row=20,SMILES_dir='./',\n",
" lower_bound = 0.0,\n",
" upper_bound = 0.08, target='', remove_duplicates=True):\n",
"\n",
" if remove_duplicates:\n",
" # Example: Keep the entry with the best MSE among the novel molecules for each SMILES\n",
" df_design = df_design.sort_values(['MSE', 'is_novel', 'SMILES', ], ascending=[True, False, True]) \\\n",
" .drop_duplicates(subset='SMILES', keep='first')\n",
"\n",
" df_design.reset_index(drop=True, inplace=True)\n",
" df_design.to_csv(f'{SMILES_dir}/sorted_noduplicates_{N_max}.csv', index=False)\n",
" \n",
" valid_smiles=visualize_smiles_and_save(list(df_design['SMILES'][:N_max]), per_row=per_row, dir_path=SMILES_dir, root=f'{target}')\n",
" \n",
" smiles_df = pd.DataFrame(valid_smiles, columns=[\"SMILES\"])\n",
"\n",
" # Save the DataFrame to a CSV file\n",
" file_path = \"/smiles_data.csv\"\n",
" smiles_df.to_csv(f'{SMILES_dir}/valid_SMILES_{N_max}.csv', index=False )\n",
" \n",
" fig, ax = plt.subplots(figsize=(8, 5))\n",
" \n",
" df_plot=df_design[(df_design['MSE'] > lower_bound) & (df_design['MSE'] < upper_bound)]\n",
" df_plot.plot(kind='kde', color='darkblue', label='KDE', ax=ax)\n",
" \n",
" # Plot histogram with density=True for probability density representation\n",
" plt.hist(df_design['MSE'], density=True, alpha=0.5, color='skyblue', label='Histogram',bins=50, \n",
" range=[lower_bound,upper_bound]\n",
" )\n",
" plt.xlim(lower_bound, upper_bound)\n",
" plt.title('Density and Histogram Plot of MSE')\n",
" plt.xlabel('MSE')\n",
" plt.ylabel('Density')\n",
" \n",
" # Adding a legend to distinguish between the KDE and Histogram\n",
" plt.legend()\n",
" \n",
" plt.savefig(SMILES_dir+f'mse_histogram_{target}.svg', format='svg')\n",
" plt.show()\n",
"\n",
" plot_MSE_over_SMILES (df_design,N_max=N_max,\n",
" lower_bound = lower_bound,\n",
" upper_bound = upper_bound, target=target,SMILES_dir=SMILES_dir)\n",
" \n",
" return df_design\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"from pandas.plotting import parallel_coordinates\n",
"\n",
"def plot_change_in_design(original, labels, target, SMILES_dir='./'):\n",
" if not os.path.exists(SMILES_dir):\n",
" os.makedirs(SMILES_dir)\n",
" \n",
" # Create a DataFrame to hold the original and target vectors with labels\n",
" df = pd.DataFrame([original, target], columns=labels)\n",
" df['Version'] = ['Original', 'Target'] # Add a 'Version' column for coloring\n",
" \n",
" # Plotting\n",
" plt.figure(figsize=(7, 4))\n",
" parallel_coordinates(df, 'Version', color=['blue', 'red'])\n",
" plt.title('Original vs Target Values across Properties')\n",
" plt.xticks(rotation=45)\n",
" plt.tight_layout()\n",
" \n",
" # Annotating changes with thicker arrows pointing towards the target\n",
" for i, label in enumerate(labels):\n",
" if original[i] < target[i]: # If the target value is greater, arrow points upwards\n",
" plt.annotate('', xy=(i, target[i]), xytext=(i, original[i]),\n",
" arrowprops=dict(arrowstyle=\"->\", color='black', lw=2))\n",
" else: # If the target value is lesser, arrow points downwards\n",
" plt.annotate('', xy=(i, target[i]), xytext=(i, original[i]),\n",
" arrowprops=dict(arrowstyle=\"->\", color='black', lw=2))\n",
" \n",
" # Save the plot as an SVG file in the specified directory\n",
" plt.savefig(SMILES_dir + \"parallel_coordinates_changes_direction.svg\", format=\"svg\")\n",
" \n",
" plt.show()\n",
" \n",
"def visualize_pred_vs_target (target, best_predicted, labels, dir_path='./', best_SMILES='',sample_count=0): \n",
" if not os.path.exists(dir_path):\n",
" os.makedirs(dir_path)\n",
" sns.set_style(\"whitegrid\")\n",
" plt.gcf().set_facecolor('white')\n",
" \n",
" x = np.arange(len(labels)) # Label locations\n",
" width = 0.35 # Width of the bars\n",
" \n",
" fig, ax = plt.subplots(figsize=(9, 5))\n",
" rects1 = ax.bar(x - width/2, target, width, label='Target')\n",
" rects2 = ax.bar(x + width/2, best_predicted, width, label='Predicted properties')\n",
" \n",
" # Add some text for labels, title and custom x-axis tick labels, etc.\n",
" ax.set_ylabel('Values')\n",
" ax.set_title(f'Comparison of Target and Predicted Properties, {best_SMILES}')\n",
" ax.set_xticks(x)\n",
" ax.set_xticklabels(labels, rotation=45, ha=\"right\")\n",
" ax.legend()\n",
" fig.tight_layout()\n",
" plt.savefig(f\"{dir_path}/QM9_best_design_{target}_barplot_{sample_count}.svg\")\n",
" plt.show()\n",
" #plt.show()\n",
"\n",
"from rdkit import Chem\n",
"from rdkit.Chem import AllChem, Draw\n",
"from rdkit.Chem import AllChem, rdDepictor\n",
"from rdkit.Chem.Draw import rdMolDraw2D\n",
" \n",
"def prime_messages (SMILES_chitin_monomer, target, N=1):\n",
" messages=[]\n",
" for i in range (N):\n",
" \n",
" line=f'GenerateMolecularProperties<{return_str( target)}>'\n",
" messages.append ({\"role\": \"user\", \"content\": line}, )\n",
" line=f'[{SMILES_chitin_monomer}]'\n",
" messages.append ({\"role\": \"assistant\", \"content\": line}, )\n",
" \n",
" return messages\n",
"\n",
"from rdkit import Chem\n",
"from rdkit.Chem import AllChem\n",
"\n",
"def smiles_to_3d(smiles, num_confs=100):\n",
" mol = Chem.MolFromSmiles(smiles)\n",
" if mol is None:\n",
" print(\"Failed to create molecule from SMILES\")\n",
" return None\n",
"\n",
" mol = Chem.AddHs(mol)\n",
" params = AllChem.ETKDGv3()\n",
" params.randomSeed = 42\n",
" if not AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, params=params):\n",
" print(\"Embedding conformations failed.\")\n",
" return None\n",
"\n",
" results = []\n",
" for conf_id in range(num_confs):\n",
" ff = AllChem.MMFFGetMoleculeForceField(mol, AllChem.MMFFGetMoleculeProperties(mol), confId=conf_id)\n",
" if ff is None:\n",
" print(f\"Failed to setup MMFF for conformer {conf_id}\")\n",
" continue\n",
" energy = ff.Minimize()\n",
" results.append((conf_id, ff.CalcEnergy()))\n",
"\n",
" if not results:\n",
" print(\"No successful energy minimization.\")\n",
" return None\n",
" \n",
"\n",
" best_conf = mol.GetConformer(min_energy_conf[0])\n",
" best_mol = Chem.Mol(mol)\n",
" best_mol.RemoveAllConformers()\n",
" best_mol.AddConformer(best_conf, assignId=True)\n",
"\n",
" coords = best_conf.GetPositions()\n",
" atom_symbols = [atom.GetSymbol() for atom in best_mol.GetAtoms()]\n",
" geometry = '\\n'.join(f'{atom} {coord[0]} {coord[1]} {coord[2]}' for atom, coord in zip(atom_symbols, coords))\n",
"\n",
" display (best_mol)\n",
" \n",
" return geometry, best_mol"
]
},
{
"cell_type": "markdown",
"id": "23f18039-4441-496c-89b0-9e467eaac83e",
"metadata": {},
"source": [
"### Property calculation as possible starting point for design iterations "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6519474d-4e03-4273-a79e-454d5845e6d6",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"SMILES_START='O1C2C3OC2C13'\n",
"properties,_=avg_properties_from_SMILES (model, tokenizer, SMILES_START, SMILES_dir=SMILES_dir,\n",
" temperature=0.3, top_k=256,top_p=0.9, num_beams=1, repetition_penalty=1.,\n",
" labels=labels, N_prop=3, plot_results=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "198840ea-21f8-41eb-b62a-bc325261b731",
"metadata": {},
"outputs": [],
"source": [
"# Retrieve the scaling parameters\n",
"data_min = scaler.data_min_\n",
"data_max = scaler.data_max_\n",
"scale = scaler.scale_\n",
"feature_min = scaler.min_\n",
"\n",
"print(\"Feature Scaling Parameters:\")\n",
"print(\"{:<20} {:<20} {:<20} {:<20}\".format(\"Feature Index\", \"Min Value\", \"Max Value\", \"Scale Factor\"))\n",
"for i in range(len(data_min)):\n",
" print(\"{:<20} {:<20} {:<20} {:<20}\".format(i, data_min[i], data_max[i], scale[i]))\n",
"\n",
"print(\"\\nPer-feature Shifts (Min):\")\n",
"for i, min_val in enumerate(feature_min):\n",
" print(\"Feature {}: {:.6f}\".format(i, min_val))"
]
},
{
"cell_type": "markdown",
"id": "0dd1f217-74c0-40f3-8edc-4b610c12e0ea",
"metadata": {},
"source": [
"### Molecular design: Iterative solution "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc2747b6-90cc-4d42-bf93-bb39dc6d9198",
"metadata": {},
"outputs": [],
"source": [
"import copy \n",
"properties=y_test[4]\n",
"\n",
"#Create new set of properties based on existing molecule (from test set)\n",
"properties_new=copy.deepcopy (properties)\n",
"properties_new[0]=properties[0]+0.2\n",
"properties_new[1]=properties[1]+0.2\n",
"plot_change_in_design (properties, labels, properties_new,SMILES_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5f9b9c5-c746-48d1-841a-a2113d13279e",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"df_design=design_molecule_loop (model, tokenizer, np.array(properties_new), SMILES_LIST=SMILES_LIST, dir_path=SMILES_dir,\n",
" temperature_pred=0.1, temperature_gen=0.3, top_k=32,top_p=0.1, repetition_penalty=1.,\n",
" threshold=0.001, N_max=64, \n",
" N_attempts_for_forward=6,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8c5be323-aa47-49dd-bc44-be74936c62c8",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"visualize_over_SMILES (df_design,N_max=30,SMILES_dir=SMILES_dir,per_row=5,\n",
" lower_bound = 0.0, remove_duplicates=True,\n",
" upper_bound = 0.02, target=np.array(properties_new))\n",
"\n",
"target=np.array(properties_new)\n",
"best_SMILES, best_predicted, best_mse, is_novel = df_design_2.iloc[5]\n",
"\n",
"print (\"Best SILES: \", best_SMILES)\n",
"print (f\"{best_SMILES} is novel: {is_novel}\")\n",
"\n",
"sns.set_style(\"whitegrid\")\n",
"\n",
"visualize_pred_vs_target (target, best_predicted, labels, dir_path=SMILES_dir, best_SMILES=best_SMILES,sample_count=0)\n",
" \n",
"visualize_SMILES(best_SMILES, dir_path=SMILES_dir, root=f'{target}_BEST')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25fd7dbe-95fd-4169-86e9-b05e86bbfb3a",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"target=np.array(properties_new)\n",
"best_SMILES, best_predicted, best_mse, is_novel = df_design_2.iloc[5]\n",
"\n",
"print (\"Best SILES: \", best_SMILES)\n",
"print (f\"{best_SMILES} is novel: {is_novel}\")\n",
"\n",
"sns.set_style(\"whitegrid\")\n",
"\n",
"visualize_pred_vs_target (target, best_predicted, labels, dir_path=SMILES_dir, best_SMILES=best_SMILES,sample_count=0)\n",
" \n",
"visualize_SMILES(best_SMILES, dir_path=SMILES_dir, root=f'{target}_BEST')"
]
}
],
"metadata": {
"environment": {
"kernel": "python3",
"name": ".m115",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/:m115"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|