|
--- |
|
pipeline_tag: fill-mask |
|
widget: |
|
- text: سن نجورسن [MASK] |
|
example_title: Example 1 |
|
- text: بو [MASK] کتابی ده. |
|
example_title: Example 2 |
|
- text: دیل [MASK] اؤنملی دیر. |
|
example_title: Example 3 |
|
language: |
|
- az |
|
metrics: |
|
- perplexity |
|
--- |
|
# AzerBERT |
|
- Type: BERT-based language model transformer |
|
- Description: AzerBERT is a pre-trained language model specifically tailored for the Iranian Azerbaijani language. It can be used for various NLP tasks, including text classification, named entity recognition, and more. |
|
|
|
## How to use |
|
```python |
|
# Use a pipeline as a high-level helper |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("fill-mask", model="language-ml-lab/AzerBert") |
|
``` |
|
|
|
```python |
|
# Load model directly |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/AzerBert") |
|
model = AutoModelForMaskedLM.from_pretrained("language-ml-lab/AzerBert") |
|
``` |