See axolotl config
axolotl version: 0.5.0
base_model: NousResearch/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
#wget -O dataset.jsonl http://94.130.230.31/dataset.jsonl
chat_template: chatml
datasets:
- path: ./dataset_2000.jsonl
type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 12
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/lora-out
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4452 | 0.0124 | 1 | 1.4698 |
1.4609 | 0.2484 | 20 | 1.5851 |
1.5405 | 0.4969 | 40 | 1.5290 |
1.482 | 0.7453 | 60 | 1.5437 |
1.5389 | 0.9938 | 80 | 1.4984 |
0.5438 | 1.2422 | 100 | 1.6491 |
0.7409 | 1.4907 | 120 | 1.7644 |
0.6342 | 1.7391 | 140 | 1.7252 |
0.6785 | 1.9876 | 160 | 1.7029 |
0.2407 | 2.2360 | 180 | 1.8367 |
0.2412 | 2.4845 | 200 | 1.8888 |
0.2817 | 2.7329 | 220 | 1.8632 |
0.2976 | 2.9814 | 240 | 1.8760 |
0.0969 | 3.2298 | 260 | 2.0450 |
0.1387 | 3.4783 | 280 | 1.9947 |
0.1758 | 3.7267 | 300 | 1.9421 |
0.1182 | 3.9752 | 320 | 1.9968 |
0.0986 | 4.2236 | 340 | 2.0739 |
0.0639 | 4.4720 | 360 | 2.0798 |
0.0656 | 4.7205 | 380 | 2.1390 |
0.0582 | 4.9689 | 400 | 2.1313 |
0.016 | 5.2174 | 420 | 2.2601 |
0.0376 | 5.4658 | 440 | 2.2150 |
0.0387 | 5.7143 | 460 | 2.2287 |
0.0388 | 5.9627 | 480 | 2.2120 |
0.012 | 6.2112 | 500 | 2.3267 |
0.0104 | 6.4596 | 520 | 2.2502 |
0.0246 | 6.7081 | 540 | 2.3221 |
0.0134 | 6.9565 | 560 | 2.2929 |
0.0025 | 7.2050 | 580 | 2.3895 |
0.0092 | 7.4534 | 600 | 2.4587 |
0.0025 | 7.7019 | 620 | 2.4200 |
0.0029 | 7.9503 | 640 | 2.4380 |
0.0021 | 8.1988 | 660 | 2.4520 |
0.0018 | 8.4472 | 680 | 2.4975 |
0.0015 | 8.6957 | 700 | 2.5138 |
0.0013 | 8.9441 | 720 | 2.5276 |
0.0012 | 9.1925 | 740 | 2.5366 |
0.0012 | 9.4410 | 760 | 2.5477 |
0.0011 | 9.6894 | 780 | 2.5455 |
0.0012 | 9.9379 | 800 | 2.5499 |
0.0012 | 10.1863 | 820 | 2.5565 |
0.0014 | 10.4348 | 840 | 2.5604 |
0.0014 | 10.6832 | 860 | 2.5621 |
0.0012 | 10.9317 | 880 | 2.5663 |
0.001 | 11.1801 | 900 | 2.5673 |
0.0008 | 11.4286 | 920 | 2.5688 |
0.0008 | 11.6770 | 940 | 2.5668 |
0.0011 | 11.9255 | 960 | 2.5669 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Model tree for lapaliv/lapaliv-0001
Base model
NousResearch/Meta-Llama-3-8B