lapp0's picture
End of training
8eac14b verified
---
base_model: gpt2
library_name: Distily
license: mit
tags:
- generated_from_trainer
model-index:
- name: distily_bench_gpt2_attn_part_2
results: []
---
# distily_bench_gpt2_attn_part_2
This student model is distilled from the teacher model [gpt2](https://huggingface.co/gpt2) using the dataset (unspecified).
The [Distily](https://github.com/lapp0/distily) library was used for this distillation.
It achieves the following results on the evaluation set:
- eval_enwikippl: 234.3043
- eval_frwikippl: 1329.5667
- eval_zhwikippl: 575.8531
- eval_loss: 2.4344
- eval_runtime: 87.576
- eval_samples_per_second: 57.093
- eval_steps_per_second: 7.137
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
-->
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl, layer_mapper=None, projector=None), hs_loss_component=LossComponent(label=hs, weight=0, loss_fn=None, layer_mapper=None, projector=None), attn_loss_component=LossComponent(label=attn, weight=2.0, loss_fn=cos, layer_mapper=None, projector=None))
- train_embeddings: True
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 1.0
### Resource Usage
Peak GPU Memory: 8.2206 GB
### Eval-Phase Metrics
| step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | zhwikippl |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| **teacher eval** | | 30.2086 | 57.2728 | | | | | 18.1784 |
| 0 | 0 | 56314.7695 | 59887.2773 | 7.8201 | 86.1883 | 58.013 | 7.252 | 59033.8086 |
| 1000 | 0.0162 | 792.2872 | 4804.1196 | 3.2178 | 86.0729 | 58.09 | 7.261 | 14971.4619 |
| 2000 | 0.0323 | 563.5076 | 3594.0178 | 3.0017 | 86.8465 | 57.573 | 7.197 | 2436.5176 |
| 3000 | 0.0485 | 462.8162 | 3038.3840 | 2.8886 | 86.4026 | 57.869 | 7.234 | 990.3070 |
| 4000 | 0.0646 | 394.8591 | 2549.8823 | 2.7877 | 86.3461 | 57.907 | 7.238 | 1110.5270 |
| 5000 | 0.0808 | 353.7159 | 2113.5315 | 2.6983 | 86.5685 | 57.758 | 7.22 | 845.9332 |
| 6000 | 0.0970 | 305.3852 | 1907.5966 | 2.6161 | 86.5704 | 57.756 | 7.22 | 792.3533 |
| 7000 | 0.1131 | 275.6120 | 1710.8368 | 2.5482 | 89.5827 | 55.814 | 6.977 | 704.9745 |
| 8000 | 0.1293 | 248.5870 | 1491.7041 | 2.4852 | 87.8996 | 56.883 | 7.11 | 655.4906 |
| 9000 | 0.1455 | 234.3043 | 1329.5667 | 2.4344 | 87.576 | 57.093 | 7.137 | 575.8531 |
| 10000 | 0.1616 | 210.1025 | 1200.8650 | 2.3778 | 88.2437 | 56.661 | 7.083 | 680.8273 |
| 11000 | 0.1778 | 195.9659 | 1137.0879 | 2.3352 | 87.2617 | 57.299 | 7.162 | 574.3172 |
| 12000 | 0.1939 | 177.5484 | 986.7017 | 2.2840 | 88.3708 | 56.58 | 7.072 | 511.2562 |
| 13000 | 0.2101 | 168.3902 | 992.2828 | 2.2496 | 86.6049 | 57.733 | 7.217 | 493.3487 |
| 14000 | 0.2263 | 159.1225 | 889.1183 | 2.2152 | 86.6651 | 57.693 | 7.212 | 434.3372 |
| 15000 | 0.2424 | 153.0509 | 800.1130 | 2.1876 | 86.8087 | 57.598 | 7.2 | 389.5484 |
| 16000 | 0.2586 | 146.4697 | 801.1292 | 2.1678 | 86.6505 | 57.703 | 7.213 | 490.2618 |
| 17000 | 0.2747 | 143.1525 | 782.1525 | 2.1519 | 86.9013 | 57.537 | 7.192 | 536.9359 |
| 18000 | 0.2909 | 139.4116 | 832.3362 | 2.1366 | 86.6158 | 57.726 | 7.216 | 568.2902 |
| 19000 | 0.3071 | 134.7601 | 733.2869 | 2.1223 | 86.3964 | 57.873 | 7.234 | 516.8853 |
| 20000 | 0.3232 | 132.8793 | 726.0842 | 2.1108 | 86.4694 | 57.824 | 7.228 | 376.9092 |
| 21000 | 0.3394 | 130.5677 | 658.1619 | 2.0982 | 86.9266 | 57.52 | 7.19 | 386.2850 |
| 22000 | 0.3556 | 130.3043 | 657.9764 | 2.0894 | 87.5122 | 57.135 | 7.142 | 418.9560 |
| 23000 | 0.3717 | 128.9555 | 687.2317 | 2.0831 | 87.0863 | 57.414 | 7.177 | 419.0120 |
| 24000 | 0.3879 | 125.7514 | 657.8835 | 2.0732 | 86.5642 | 57.761 | 7.22 | 391.6348 |
| 25000 | 0.4040 | 124.6431 | 676.3678 | 2.0703 | 86.6818 | 57.682 | 7.21 | 384.3811 |
| 26000 | 0.4202 | 124.4787 | 653.3537 | 2.0597 | 87.1964 | 57.342 | 7.168 | 403.9578 |
| 27000 | 0.4364 | 122.7223 | 659.5090 | 2.0546 | 86.5911 | 57.743 | 7.218 | 316.7159 |
| 28000 | 0.4525 | 123.1997 | 631.8794 | 2.0501 | 86.9662 | 57.494 | 7.187 | 295.1540 |
| 29000 | 0.4687 | 122.9990 | 659.6486 | 2.0423 | 87.0187 | 57.459 | 7.182 | 310.8498 |
| 30000 | 0.4848 | 123.1041 | 617.8698 | 2.0464 | 87.3158 | 57.263 | 7.158 | 315.3653 |
| 31000 | 0.5010 | 120.1201 | 613.0962 | 2.0351 | 87.311 | 57.267 | 7.158 | 308.4515 |
| 32000 | 0.5172 | 119.4781 | 630.6332 | 2.0323 | 87.0327 | 57.45 | 7.181 | 274.0701 |
| 33000 | 0.5333 | 118.0396 | 624.0867 | 2.0277 | 86.8174 | 57.592 | 7.199 | 285.6919 |
| 34000 | 0.5495 | 119.1354 | 588.2814 | 2.0249 | 86.7837 | 57.614 | 7.202 | 316.9274 |
| 35000 | 0.5657 | 117.2539 | 567.9440 | 2.0212 | 87.7979 | 56.949 | 7.119 | 303.2645 |
| 36000 | 0.5818 | 117.5548 | 608.1882 | 2.0241 | 86.4044 | 57.867 | 7.233 | 256.7451 |
| 37000 | 0.5980 | 116.6455 | 600.1797 | 2.0164 | 87.1429 | 57.377 | 7.172 | 345.4349 |
| 38000 | 0.6141 | 116.6998 | 564.5506 | 2.0140 | 87.5854 | 57.087 | 7.136 | 283.1472 |
| 39000 | 0.6303 | 113.8975 | 538.0084 | 2.0085 | 86.8118 | 57.596 | 7.199 | 285.9208 |
| 40000 | 0.6465 | 115.6533 | 579.6762 | 2.0130 | 87.6272 | 57.06 | 7.132 | 268.8502 |
| 41000 | 0.6626 | 114.0037 | 569.7087 | 2.0107 | 86.8951 | 57.541 | 7.193 | 298.6428 |
| 42000 | 0.6788 | 114.4206 | 558.2177 | 2.0114 | 86.4056 | 57.867 | 7.233 | 325.7667 |
| 43000 | 0.6949 | 114.1277 | 570.9554 | 2.0067 | 86.7633 | 57.628 | 7.204 | 297.6475 |
| 44000 | 0.7111 | 112.6310 | 603.2343 | 2.0041 | 87.2036 | 57.337 | 7.167 | 265.9578 |
| 45000 | 0.7273 | 112.3951 | 582.9551 | 1.9978 | 86.1934 | 58.009 | 7.251 | 276.3855 |
| 46000 | 0.7434 | 112.9463 | 591.3171 | 1.9976 | 86.5934 | 57.741 | 7.218 | 270.1097 |
| 47000 | 0.7596 | 112.1510 | 564.6300 | 1.9943 | 86.827 | 57.586 | 7.198 | 323.6853 |
| 48000 | 0.7758 | 112.8236 | 513.6188 | 1.9968 | 86.3974 | 57.872 | 7.234 | 305.2553 |
| 49000 | 0.7919 | 112.7886 | 565.1480 | 1.9948 | 86.5571 | 57.765 | 7.221 | 276.0167 |
| 50000 | 0.8081 | 111.8900 | 592.2350 | 1.9932 | 86.9533 | 57.502 | 7.188 | 247.9840 |
| 51000 | 0.8242 | 111.4391 | 588.3229 | 1.9920 | 86.4566 | 57.832 | 7.229 | 298.2842 |
| 52000 | 0.8404 | 109.9350 | 549.1997 | 1.9904 | 86.5867 | 57.746 | 7.218 | 318.3695 |
| 53000 | 0.8566 | 110.8264 | 544.7263 | 1.9856 | 87.1758 | 57.355 | 7.169 | 311.5147 |
| 54000 | 0.8727 | 111.0849 | 544.9952 | 1.9857 | 87.388 | 57.216 | 7.152 | 334.9867 |
| 55000 | 0.8889 | 111.1799 | 602.7242 | 1.9865 | 86.8376 | 57.579 | 7.197 | 265.1776 |
| 56000 | 0.9051 | 111.2490 | 553.5536 | 1.9821 | 87.5367 | 57.119 | 7.14 | 326.5943 |
| 57000 | 0.9212 | 110.1914 | 582.8317 | 1.9870 | 87.0656 | 57.428 | 7.178 | 1162.1104 |
| 58000 | 0.9374 | 109.1016 | 657.6982 | 1.9860 | 86.6253 | 57.72 | 7.215 | 322.6926 |
| 59000 | 0.9535 | 111.8119 | 596.5937 | 1.9831 | 86.3097 | 57.931 | 7.241 | 408.6782 |
| 60000 | 0.9697 | 108.9746 | 586.0871 | 1.9748 | 86.6963 | 57.673 | 7.209 | 268.2405 |
| 61000 | 0.9859 | 109.9862 | 560.1890 | 1.9777 | 86.8734 | 57.555 | 7.194 | 294.4846 |
| 61875 | 1.0 | 110.1401 | 573.6587 | 1.9760 | 86.766 | 57.626 | 7.203 | 273.4851 |
### Framework versions
- Distily 0.2.0
- Transformers 4.44.0
- Pytorch 2.3.0
- Datasets 2.20.0