laura63's picture
update model card README.md
9f7d519
|
raw
history blame
2.35 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - precision
model-index:
  - name: wav2vec2-base-finetuned-ks
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: Data_Train
          split: train
          args: Data_Train
        metrics:
          - name: Precision
            type: precision
            value: 0.8241279069767442

wav2vec2-base-finetuned-ks

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0003
  • Precision: 0.8241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision
2.5909 1.0 688 2.4765 0.2253
1.9983 2.0 1376 1.6935 0.5262
1.2894 3.0 2064 1.3080 0.6860
0.9059 4.0 2752 0.9770 0.7384
0.4651 5.0 3440 0.8961 0.7762
0.7273 6.0 4128 0.9682 0.7892
0.366 7.0 4816 1.0405 0.7951
0.8745 8.0 5504 1.0784 0.8023
0.1568 9.0 6192 1.0328 0.8169
0.4805 10.0 6880 1.0003 0.8241

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3