BTCUSDT 1-Hour Tokenizer
Tokenizer Description
This is a specialized tokenizer designed for time-series cryptocurrency data encoding, specifically fine-tuned for BTCUSDT (Bitcoin/USDT) 1-hour candlestick data. It converts numerical trading data (OHLCV - Open, High, Low, Close, Volume) into token representations suitable for transformer-based models.
Tokenizer Details
- Type: Numeric Time-Series Tokenizer
 - Vocabulary Size: Model-specific
 - Input Format: BTCUSDT candlestick data (OHLCV)
 - Output: Token sequences for model inference
 - Framework: Hugging Face Transformers compatible
 
Purpose
This tokenizer is used to preprocess historical BTCUSDT 1-hour trading data before feeding it into the fine-tuned prediction model. It handles:
- Price normalization: Converts raw price values to a standardized token space
 - Volume encoding: Encodes trading volume information
 - Temporal sequences: Preserves time-series relationships in data
 - Model compatibility: Ensures proper input format for the BTCUSDT 1h fine-tuned model
 
How to Use
Installation
pip install transformers torch
Loading the Tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("your-huggingface-username/BTCUSDT-1h-tokenizer")
Tokenizing BTCUSDT Data
# Example: Tokenize BTCUSDT candlestick data
candlestick_data = "BTCUSDT 1h: Open=45230.5, High=45600.2, Low=45100.3, Close=45450.8, Volume=2345.67"
tokens = tokenizer.encode(candlestick_data, return_tensors="pt")
print(tokens)
# Decode tokens back to readable format
decoded = tokenizer.decode(tokens[0])
print(decoded)
Integration with Model
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("your-huggingface-username/BTCUSDT-1h-tokenizer")
model = AutoModelForCausalLM.from_pretrained("your-huggingface-username/BTCUSDT-1h-finetuned")
# Prepare data
historical_data = "OHLCV data here..."
tokens = tokenizer.encode(historical_data, return_tensors="pt")
# Get predictions
outputs = model.generate(tokens, max_length=50)
predictions = tokenizer.decode(outputs[0])
Technical Specifications
- Compatible with: BTCUSDT 1-Hour Fine-tuned Model
 - Data Format: Open, High, Low, Close, Volume (OHLCV)
 - Time Granularity: 1-hour candlesticks
 - Supported Operations: Encoding, decoding, tokenization
 - Framework: PyTorch / TensorFlow compatible
 
Training Data
- Dataset: BTCUSDT 1-hour historical candles
 - Source: Cryptocurrency exchange data
 - Time Coverage: Historical trading data up to October 2025
 - Data Points: Thousands of 1-hour candles
 
Limitations
- Specialized for BTCUSDT: Not recommended for other cryptocurrency pairs or timeframes
 - 1-Hour Granularity: Designed specifically for 1-hour candlestick data
 - Numeric Focus: Optimized for OHLCV data format
 - Normalization: Assumes price ranges similar to historical BTCUSDT data
 
Usage Notes
โ ๏ธ Important:
- This tokenizer should be used exclusively with the BTCUSDT 1h fine-tuned model
 - Do not use this tokenizer with other models or datasets
 - Ensure your input data follows the OHLCV format
 - Maintain consistent data normalization across datasets
 
Related Models
- Fine-tuned Model: BTCUSDT 1h Fine-tuned Model
 - Base Model: Kronos
 
License
This tokenizer is released under the MIT License.
Citation
If you use this tokenizer, please cite:
@misc{btcusdt_tokenizer_2025,
  title={BTCUSDT 1-Hour Tokenizer},
  author={Your Name},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/your-username/BTCUSDT-1h-tokenizer}}
}
Acknowledgments
- Base framework: Hugging Face Transformers
 - Compatible with: BTCUSDT 1h Fine-tuned Model
 
Contact & Support
For questions:
Last Updated: October 20, 2025
- Downloads last month
 - 46
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support