Edit model card

text_shortening_model_v12

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8106
  • Rouge1: 0.5884
  • Rouge2: 0.3622
  • Rougel: 0.5479
  • Rougelsum: 0.5481
  • Bert precision: 0.8963
  • Bert recall: 0.9008
  • Average word count: 11.0857
  • Max word count: 16
  • Min word count: 6
  • Average token count: 16.1643
  • % shortened texts with length > 12: 22.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.9958 1.0 62 1.5731 0.5546 0.3304 0.5049 0.5049 0.8848 0.8911 11.3714 18 4 16.0929 42.1429
1.6826 2.0 124 1.4736 0.5884 0.3462 0.534 0.5335 0.8897 0.8994 11.6 17 4 16.8786 37.8571
1.4894 3.0 186 1.4232 0.5932 0.3573 0.5429 0.5426 0.8912 0.9016 11.7 16 6 16.9857 38.5714
1.3728 4.0 248 1.3991 0.5857 0.3546 0.5333 0.5331 0.8892 0.9008 11.6214 16 7 17.0857 37.8571
1.2891 5.0 310 1.3848 0.5982 0.3681 0.5455 0.5448 0.8913 0.9029 11.8143 17 6 17.0929 39.2857
1.1905 6.0 372 1.3698 0.5937 0.3636 0.5446 0.5437 0.8914 0.9031 11.6286 16 6 17.1 33.5714
1.1375 7.0 434 1.3690 0.5884 0.3589 0.5419 0.5413 0.8889 0.8999 11.6857 16 7 17.1071 34.2857
1.0682 8.0 496 1.3920 0.5942 0.3724 0.5499 0.5494 0.8933 0.9013 11.3786 15 6 16.5786 28.5714
1.0096 9.0 558 1.3899 0.602 0.3725 0.555 0.554 0.8954 0.9027 11.3357 16 6 16.5929 26.4286
0.9682 10.0 620 1.3983 0.6019 0.3729 0.5549 0.5542 0.8956 0.9043 11.5214 16 6 16.8357 30.0
0.9141 11.0 682 1.4009 0.5888 0.3584 0.5375 0.5364 0.892 0.9002 11.3929 16 6 16.7929 26.4286
0.8691 12.0 744 1.4216 0.5937 0.3629 0.5437 0.5434 0.8935 0.9019 11.3286 16 6 16.5143 25.7143
0.8248 13.0 806 1.4202 0.5925 0.3686 0.544 0.5443 0.8949 0.9023 11.2214 16 6 16.4929 25.0
0.7947 14.0 868 1.4393 0.5912 0.3611 0.5398 0.5387 0.8921 0.9014 11.4 16 7 16.7071 26.4286
0.7606 15.0 930 1.4555 0.5926 0.3651 0.5394 0.5386 0.8925 0.9014 11.3214 16 7 16.7714 25.7143
0.7253 16.0 992 1.4538 0.603 0.3782 0.5547 0.5538 0.8971 0.9038 11.2 16 6 16.4714 22.1429
0.7005 17.0 1054 1.4706 0.5936 0.3716 0.5471 0.5466 0.8944 0.9015 11.2143 16 6 16.5214 22.1429
0.6778 18.0 1116 1.4916 0.607 0.3818 0.5636 0.5623 0.8997 0.9048 11.0071 16 6 16.4143 19.2857
0.641 19.0 1178 1.5157 0.609 0.3817 0.5637 0.563 0.8987 0.9055 11.2214 15 6 16.4643 25.0
0.6203 20.0 1240 1.5049 0.603 0.3727 0.5517 0.5509 0.8963 0.9047 11.2857 15 6 16.7143 26.4286
0.5995 21.0 1302 1.5276 0.6033 0.3742 0.5506 0.5495 0.8966 0.9047 11.2643 15 6 16.5429 25.7143
0.5819 22.0 1364 1.5465 0.6029 0.3779 0.5568 0.5554 0.8989 0.9062 11.2929 16 6 16.6214 20.7143
0.5807 23.0 1426 1.5633 0.6008 0.3675 0.5536 0.553 0.8964 0.9039 11.2643 16 6 16.6429 24.2857
0.5374 24.0 1488 1.5787 0.606 0.379 0.5609 0.5601 0.8977 0.9065 11.4286 17 7 16.8071 23.5714
0.5226 25.0 1550 1.5796 0.6006 0.3709 0.5523 0.5514 0.8978 0.9047 11.2143 16 7 16.5357 18.5714
0.5189 26.0 1612 1.5931 0.5944 0.3623 0.5471 0.5456 0.8966 0.9022 11.1857 16 7 16.3786 21.4286
0.4965 27.0 1674 1.6016 0.6037 0.3829 0.5587 0.558 0.8993 0.9043 11.2571 16 6 16.3714 23.5714
0.5067 28.0 1736 1.6309 0.6088 0.3843 0.5671 0.5661 0.8995 0.906 11.2571 16 6 16.5357 25.7143
0.4665 29.0 1798 1.6513 0.5965 0.3733 0.5505 0.5495 0.8976 0.9024 11.2429 15 6 16.4571 22.8571
0.4676 30.0 1860 1.6501 0.6043 0.3762 0.5561 0.5555 0.8978 0.9038 11.3214 15 6 16.5857 24.2857
0.4442 31.0 1922 1.6760 0.5982 0.3784 0.559 0.5583 0.8979 0.903 11.1857 15 6 16.3786 20.7143
0.442 32.0 1984 1.6750 0.6029 0.377 0.5588 0.5583 0.898 0.9044 11.2429 15 6 16.5429 22.8571
0.4247 33.0 2046 1.6713 0.5995 0.3831 0.5563 0.5554 0.8963 0.9051 11.4857 16 7 16.7143 27.8571
0.4279 34.0 2108 1.6745 0.6047 0.3805 0.5601 0.5594 0.899 0.9052 11.2786 15 6 16.3071 27.1429
0.4116 35.0 2170 1.6822 0.6046 0.3794 0.5581 0.5579 0.8983 0.9052 11.2929 15 6 16.5071 25.7143
0.4135 36.0 2232 1.6853 0.6084 0.3875 0.564 0.564 0.8998 0.9054 11.2143 15 6 16.25 26.4286
0.392 37.0 2294 1.7124 0.6052 0.3806 0.5647 0.5646 0.8982 0.9053 11.3143 15 5 16.4786 26.4286
0.3783 38.0 2356 1.7180 0.5995 0.3784 0.5565 0.5564 0.9001 0.9035 11.0786 16 5 16.1786 22.1429
0.368 39.0 2418 1.7344 0.603 0.3869 0.5669 0.5663 0.9009 0.9047 11.0357 16 6 16.1 18.5714
0.3745 40.0 2480 1.7331 0.5961 0.3777 0.5546 0.5541 0.897 0.9024 11.2071 16 7 16.4071 20.0
0.3725 41.0 2542 1.7435 0.601 0.3785 0.557 0.557 0.898 0.9042 11.2429 16 6 16.3429 22.8571
0.3655 42.0 2604 1.7584 0.5949 0.3774 0.5533 0.5533 0.8964 0.9027 11.2143 16 7 16.35 23.5714
0.342 43.0 2666 1.7589 0.5957 0.3773 0.5538 0.5536 0.8987 0.9033 11.0571 16 7 16.0714 20.0
0.3476 44.0 2728 1.7631 0.5937 0.3761 0.5523 0.5521 0.897 0.9024 11.1643 16 7 16.3071 22.8571
0.3327 45.0 2790 1.7705 0.5903 0.3676 0.5492 0.5487 0.8966 0.902 11.1714 16 7 16.2714 23.5714
0.3412 46.0 2852 1.7684 0.5962 0.368 0.5535 0.5528 0.8968 0.9036 11.2429 16 7 16.4143 25.0
0.3376 47.0 2914 1.7731 0.5961 0.3698 0.5532 0.553 0.8968 0.9033 11.1857 15 7 16.3714 24.2857
0.3191 48.0 2976 1.7689 0.5965 0.3729 0.5518 0.5514 0.8974 0.9037 11.2071 17 6 16.35 24.2857
0.3289 49.0 3038 1.7739 0.5954 0.3711 0.5561 0.5556 0.8975 0.903 11.15 17 6 16.3214 23.5714
0.3195 50.0 3100 1.7801 0.5906 0.3637 0.551 0.5506 0.8966 0.9021 11.1286 15 7 16.2929 21.4286
0.3141 51.0 3162 1.7849 0.5977 0.3712 0.5569 0.5564 0.8985 0.9036 11.1214 16 6 16.2643 22.1429
0.3118 52.0 3224 1.7877 0.5995 0.3744 0.555 0.5547 0.8986 0.9043 11.1571 16 7 16.3286 22.1429
0.3089 53.0 3286 1.7922 0.5988 0.3687 0.5517 0.5517 0.8978 0.9036 11.15 16 6 16.2929 22.8571
0.3007 54.0 3348 1.7956 0.5948 0.3653 0.5497 0.5495 0.8988 0.9021 10.9571 16 6 16.0143 20.0
0.3063 55.0 3410 1.7993 0.5922 0.3639 0.5482 0.5473 0.8966 0.9024 11.1 16 7 16.25 22.1429
0.3074 56.0 3472 1.8007 0.5915 0.3669 0.5491 0.549 0.8969 0.9012 11.0214 16 6 16.1 21.4286
0.2941 57.0 3534 1.8052 0.5899 0.3649 0.5479 0.548 0.897 0.9009 10.9786 16 6 16.0643 20.7143
0.2923 58.0 3596 1.8096 0.5894 0.364 0.5493 0.549 0.8966 0.9015 11.0857 16 6 16.1857 22.8571
0.3076 59.0 3658 1.8105 0.5895 0.3641 0.5493 0.5491 0.8965 0.9015 11.1 16 6 16.2143 23.5714
0.3002 60.0 3720 1.8106 0.5884 0.3622 0.5479 0.5481 0.8963 0.9008 11.0857 16 6 16.1643 22.8571

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v12

Base model

google-t5/t5-small
Finetuned
(1501)
this model