Edit model card

text_shortening_model_v26

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2306
  • Rouge1: 0.5085
  • Rouge2: 0.2908
  • Rougel: 0.4563
  • Rougelsum: 0.456
  • Bert precision: 0.88
  • Bert recall: 0.8755
  • Average word count: 8.5646
  • Max word count: 17
  • Min word count: 3
  • Average token count: 13.2012
  • % shortened texts with length > 12: 8.7087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.1038 1.0 145 1.6481 0.4984 0.2848 0.4508 0.4519 0.8723 0.8719 9.1502 18 3 13.7117 15.9159
1.7274 2.0 290 1.5436 0.5177 0.3156 0.4706 0.4714 0.8771 0.8775 9.1141 18 4 13.6637 14.7147
1.561 3.0 435 1.4685 0.5264 0.3157 0.4671 0.469 0.8773 0.8793 9.2823 17 4 13.955 14.1141
1.4244 4.0 580 1.4429 0.5213 0.3136 0.4674 0.4689 0.8772 0.8774 9.0811 17 4 13.8288 12.9129
1.3375 5.0 725 1.4171 0.5326 0.3172 0.4768 0.4778 0.8785 0.8807 9.3063 18 5 13.964 14.4144
1.2462 6.0 870 1.3989 0.5259 0.3126 0.4707 0.4714 0.8807 0.8768 8.6577 17 4 13.1441 9.6096
1.1822 7.0 1015 1.3797 0.5321 0.3147 0.4687 0.4699 0.8798 0.8792 9.009 17 4 13.6877 12.9129
1.1001 8.0 1160 1.3735 0.5387 0.325 0.481 0.4814 0.8805 0.8835 9.3213 17 4 14.0601 14.7147
1.0329 9.0 1305 1.3813 0.53 0.3122 0.4694 0.4706 0.8799 0.8811 9.024 17 4 13.7057 11.1111
0.9891 10.0 1450 1.3734 0.5334 0.3191 0.4715 0.4726 0.8793 0.8829 9.3243 17 4 14.1291 13.8138
0.9205 11.0 1595 1.3687 0.5279 0.3111 0.4663 0.4676 0.8793 0.8802 9.03 16 4 13.6577 11.4114
0.8857 12.0 1740 1.3986 0.5219 0.3098 0.4694 0.4703 0.8811 0.879 8.8018 15 3 13.3934 11.4114
0.8444 13.0 1885 1.4143 0.5291 0.3084 0.4707 0.4718 0.8802 0.8796 9.03 17 4 13.6727 13.5135
0.8039 14.0 2030 1.4352 0.5216 0.2989 0.4631 0.464 0.8812 0.878 8.7958 16 4 13.4805 9.3093
0.7653 15.0 2175 1.4509 0.525 0.3076 0.4743 0.4751 0.8834 0.8783 8.5526 16 4 13.2162 8.7087
0.7256 16.0 2320 1.4541 0.5153 0.2952 0.4566 0.4579 0.8779 0.8768 8.8739 16 4 13.5405 12.012
0.7018 17.0 2465 1.4859 0.5312 0.306 0.4722 0.4727 0.8812 0.8823 9.0841 17 4 13.6967 14.4144
0.6784 18.0 2610 1.4977 0.5215 0.3068 0.4674 0.4684 0.8817 0.877 8.5766 16 4 13.2072 10.2102
0.6483 19.0 2755 1.5040 0.5297 0.3192 0.4757 0.4756 0.8817 0.8818 9.021 16 4 13.7327 12.012
0.6166 20.0 2900 1.5376 0.526 0.3119 0.4768 0.4774 0.8835 0.8808 8.8138 16 4 13.3634 10.2102
0.5955 21.0 3045 1.5198 0.528 0.3129 0.4795 0.4805 0.8829 0.8807 8.8769 16 4 13.5075 9.9099
0.5678 22.0 3190 1.5499 0.518 0.2988 0.4636 0.464 0.8802 0.8785 8.9249 17 4 13.6006 12.6126
0.5599 23.0 3335 1.5487 0.519 0.3057 0.4691 0.4698 0.8812 0.8773 8.6607 18 4 13.2192 9.3093
0.535 24.0 3480 1.5912 0.5243 0.3054 0.4708 0.4717 0.8828 0.8779 8.6456 16 4 13.1532 9.9099
0.5189 25.0 3625 1.5995 0.5314 0.3106 0.4735 0.474 0.8827 0.8815 8.9099 18 4 13.6126 12.6126
0.4981 26.0 3770 1.6036 0.5222 0.3037 0.4675 0.4676 0.8824 0.8788 8.7658 15 4 13.3784 9.9099
0.4729 27.0 3915 1.6360 0.5114 0.2927 0.46 0.4604 0.8807 0.875 8.5676 15 4 13.1592 9.009
0.462 28.0 4060 1.6648 0.5145 0.2945 0.4586 0.459 0.8812 0.8754 8.5435 17 3 13.0841 9.009
0.4467 29.0 4205 1.6749 0.5076 0.2828 0.4527 0.4533 0.8794 0.8746 8.6697 16 3 13.1772 9.6096
0.4298 30.0 4350 1.6873 0.5215 0.2976 0.4683 0.4679 0.8822 0.8774 8.5766 16 3 13.1682 7.8078
0.4186 31.0 4495 1.7008 0.5129 0.2915 0.4614 0.4614 0.8814 0.8763 8.5736 16 4 13.1892 8.7087
0.4043 32.0 4640 1.7077 0.5121 0.2859 0.4572 0.457 0.8796 0.8765 8.7387 16 3 13.4114 10.2102
0.3835 33.0 4785 1.7421 0.5106 0.2831 0.4579 0.4577 0.8785 0.8763 8.7988 17 3 13.4865 10.8108
0.377 34.0 4930 1.7763 0.5135 0.2907 0.4585 0.4586 0.8808 0.8768 8.6787 15 3 13.4084 10.8108
0.3672 35.0 5075 1.7642 0.5243 0.3018 0.4701 0.4694 0.8826 0.8777 8.5616 15 3 13.1892 9.6096
0.3499 36.0 5220 1.7840 0.5175 0.2965 0.466 0.4656 0.8815 0.8772 8.5796 17 3 13.2252 9.9099
0.3417 37.0 5365 1.8032 0.5163 0.2964 0.4638 0.4636 0.8801 0.8785 8.8348 16 3 13.6156 11.4114
0.3364 38.0 5510 1.8112 0.5096 0.2832 0.4532 0.4536 0.8783 0.8763 8.8829 17 4 13.4925 10.5105
0.315 39.0 5655 1.8360 0.5208 0.3034 0.4692 0.4694 0.8836 0.8797 8.7177 17 4 13.3213 11.4114
0.3117 40.0 5800 1.8419 0.5069 0.285 0.4555 0.4558 0.879 0.8746 8.7117 17 3 13.3634 9.009
0.3195 41.0 5945 1.8435 0.5214 0.2984 0.4686 0.4691 0.8817 0.8779 8.7297 17 3 13.3303 11.4114
0.3062 42.0 6090 1.8574 0.5174 0.2941 0.4672 0.4676 0.8827 0.8779 8.6907 17 3 13.3604 9.6096
0.2892 43.0 6235 1.8839 0.5083 0.2939 0.4603 0.4603 0.8789 0.8763 8.7147 17 4 13.5045 10.8108
0.283 44.0 6380 1.8838 0.5078 0.2873 0.4546 0.4552 0.879 0.8757 8.7327 17 4 13.5135 10.8108
0.2813 45.0 6525 1.8947 0.5126 0.2919 0.4603 0.4608 0.8803 0.8762 8.7027 16 3 13.4505 10.8108
0.2716 46.0 6670 1.9045 0.5163 0.3 0.4687 0.4686 0.8813 0.8771 8.6126 17 4 13.3303 9.3093
0.2604 47.0 6815 1.9097 0.5106 0.2928 0.4617 0.4621 0.8796 0.8761 8.7477 17 3 13.5135 9.009
0.2514 48.0 6960 1.9477 0.5156 0.2959 0.463 0.4633 0.8813 0.876 8.6006 17 3 13.3453 8.4084
0.2444 49.0 7105 1.9599 0.5107 0.2903 0.4581 0.4586 0.8796 0.875 8.6607 16 4 13.3994 8.4084
0.2428 50.0 7250 1.9775 0.5082 0.2903 0.4587 0.4587 0.88 0.8748 8.5435 16 3 13.2823 8.1081
0.2395 51.0 7395 1.9783 0.5154 0.2948 0.4647 0.4647 0.8809 0.8768 8.6817 17 3 13.3303 9.6096
0.2317 52.0 7540 1.9881 0.5092 0.2895 0.4545 0.4546 0.8807 0.8766 8.6126 17 3 13.3964 7.8078
0.224 53.0 7685 2.0001 0.5165 0.3017 0.4622 0.4627 0.8802 0.8777 8.7598 17 3 13.4895 9.3093
0.2161 54.0 7830 2.0140 0.5176 0.2974 0.465 0.4652 0.881 0.878 8.7327 17 3 13.4384 9.9099
0.2201 55.0 7975 2.0317 0.5102 0.2904 0.4554 0.4553 0.8802 0.8765 8.6306 16 3 13.3754 10.8108
0.2153 56.0 8120 2.0427 0.5172 0.2983 0.4632 0.4632 0.8808 0.8771 8.7297 17 3 13.4114 11.1111
0.211 57.0 8265 2.0432 0.5165 0.2983 0.4652 0.4652 0.8815 0.8765 8.5976 17 3 13.2432 9.9099
0.1995 58.0 8410 2.0720 0.5062 0.2913 0.4528 0.4528 0.8781 0.8739 8.6006 17 3 13.2763 8.7087
0.2072 59.0 8555 2.0574 0.5099 0.2902 0.4554 0.4563 0.8803 0.8751 8.5435 17 3 13.1411 9.009
0.1989 60.0 8700 2.0722 0.5127 0.2943 0.459 0.4585 0.8807 0.8767 8.6967 17 4 13.3213 11.1111
0.1911 61.0 8845 2.0669 0.5125 0.2922 0.459 0.4581 0.8806 0.875 8.5556 16 3 13.1622 9.009
0.1902 62.0 8990 2.0912 0.5063 0.2892 0.4498 0.45 0.8795 0.8739 8.5105 17 4 13.0751 9.9099
0.1905 63.0 9135 2.0875 0.5029 0.2845 0.4492 0.4492 0.878 0.8745 8.6727 16 4 13.3423 10.5105
0.1895 64.0 9280 2.0787 0.5094 0.2941 0.4551 0.4557 0.8791 0.8751 8.7117 17 4 13.2973 9.9099
0.1813 65.0 9425 2.0960 0.5168 0.2998 0.462 0.4619 0.8812 0.8773 8.7177 17 4 13.3634 10.8108
0.1856 66.0 9570 2.0888 0.5053 0.2921 0.4549 0.4552 0.8793 0.8746 8.5676 17 3 13.1772 8.7087
0.1669 67.0 9715 2.1158 0.5184 0.3018 0.4623 0.4624 0.8814 0.8772 8.6517 17 4 13.2462 12.012
0.1676 68.0 9860 2.1246 0.5195 0.2977 0.4642 0.4638 0.8814 0.8778 8.7207 17 4 13.3243 11.4114
0.1682 69.0 10005 2.1325 0.5112 0.2963 0.4572 0.4579 0.8805 0.8759 8.5916 17 4 13.1742 9.9099
0.1664 70.0 10150 2.1442 0.5048 0.2828 0.4505 0.4506 0.8786 0.8743 8.6366 17 4 13.2883 8.7087
0.1655 71.0 10295 2.1339 0.5132 0.295 0.4603 0.4603 0.8802 0.8754 8.7087 17 4 13.3273 10.8108
0.1621 72.0 10440 2.1391 0.5036 0.2858 0.4527 0.4526 0.8786 0.8722 8.4715 17 4 13.0901 9.009
0.1624 73.0 10585 2.1438 0.5055 0.2865 0.4558 0.4557 0.8786 0.8737 8.5255 17 4 13.1832 9.009
0.1486 74.0 10730 2.1623 0.5073 0.2871 0.4554 0.4551 0.8794 0.8745 8.5375 17 4 13.2372 8.4084
0.1593 75.0 10875 2.1699 0.5054 0.2873 0.4527 0.4526 0.8782 0.874 8.6126 17 4 13.2913 10.2102
0.16 76.0 11020 2.1652 0.5062 0.284 0.4557 0.4556 0.8788 0.8748 8.6937 17 4 13.2733 9.9099
0.1464 77.0 11165 2.1777 0.5073 0.2876 0.4556 0.4553 0.8786 0.8749 8.6787 17 4 13.3453 10.8108
0.1492 78.0 11310 2.1705 0.5027 0.2854 0.4498 0.45 0.8774 0.8738 8.6937 17 4 13.3724 10.5105
0.1565 79.0 11455 2.1738 0.4946 0.2768 0.4432 0.4431 0.8757 0.8718 8.5916 17 4 13.3303 10.2102
0.1429 80.0 11600 2.1968 0.5021 0.2878 0.4523 0.452 0.8781 0.8737 8.5375 17 4 13.2583 9.009
0.1424 81.0 11745 2.1810 0.509 0.2909 0.4562 0.4558 0.8785 0.8752 8.6186 17 3 13.2703 10.8108
0.1447 82.0 11890 2.1790 0.5042 0.283 0.4504 0.4507 0.8782 0.874 8.5616 15 4 13.2162 10.5105
0.1399 83.0 12035 2.1908 0.5018 0.2801 0.4489 0.4488 0.8772 0.8733 8.5796 17 3 13.2042 10.2102
0.1417 84.0 12180 2.1985 0.504 0.2812 0.4534 0.4527 0.8782 0.8739 8.5375 17 3 13.0751 9.6096
0.1375 85.0 12325 2.1914 0.5061 0.2844 0.4557 0.4549 0.8791 0.8749 8.5435 17 4 13.1441 9.9099
0.1354 86.0 12470 2.2087 0.5084 0.2889 0.4592 0.4589 0.8798 0.8755 8.5315 17 4 13.1321 10.2102
0.1381 87.0 12615 2.2014 0.5068 0.2857 0.4555 0.4551 0.8792 0.8754 8.5345 17 4 13.1802 10.2102
0.137 88.0 12760 2.2022 0.5077 0.2894 0.4561 0.4552 0.8793 0.8753 8.5495 17 4 13.1682 10.2102
0.1301 89.0 12905 2.2055 0.5096 0.2905 0.4581 0.4581 0.8795 0.8758 8.6186 17 4 13.1802 10.2102
0.1374 90.0 13050 2.2118 0.507 0.2865 0.4544 0.4544 0.8793 0.8751 8.5766 17 4 13.1532 9.9099
0.1338 91.0 13195 2.2074 0.5048 0.2863 0.453 0.4529 0.8791 0.8747 8.5135 17 4 13.0661 8.7087
0.1308 92.0 13340 2.2144 0.5053 0.2886 0.4542 0.4545 0.8789 0.8742 8.5195 17 3 13.0961 8.4084
0.1254 93.0 13485 2.2208 0.5118 0.294 0.4611 0.4612 0.8805 0.8763 8.5225 17 3 13.1141 8.4084
0.1311 94.0 13630 2.2254 0.5084 0.2909 0.4573 0.4573 0.8798 0.8752 8.5165 17 3 13.0751 7.8078
0.1272 95.0 13775 2.2274 0.5056 0.2872 0.454 0.4538 0.8792 0.8745 8.5766 17 3 13.1982 8.4084
0.1304 96.0 13920 2.2313 0.5053 0.2879 0.4526 0.4526 0.8794 0.8747 8.5435 17 3 13.1652 8.7087
0.1303 97.0 14065 2.2304 0.5061 0.2871 0.4532 0.4532 0.8793 0.8748 8.5586 17 3 13.2012 8.7087
0.1306 98.0 14210 2.2303 0.5081 0.2889 0.4556 0.4552 0.8796 0.8753 8.5766 17 3 13.2102 8.7087
0.1387 99.0 14355 2.2304 0.5088 0.2903 0.4563 0.4561 0.8799 0.8754 8.5766 17 3 13.2042 9.009
0.1339 100.0 14500 2.2306 0.5085 0.2908 0.4563 0.456 0.88 0.8755 8.5646 17 3 13.2012 8.7087

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v26

Base model

google-t5/t5-small
Finetuned
(1501)
this model