Edit model card

text_shortening_model_v59

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8420
  • Rouge1: 0.7121
  • Rouge2: 0.5315
  • Rougel: 0.6662
  • Rougelsum: 0.6654
  • Bert precision: 0.9198
  • Bert recall: 0.9174
  • Bert f1-score: 0.9181
  • Average word count: 8.2143
  • Max word count: 14
  • Min word count: 3
  • Average token count: 12.6027
  • % shortened texts with length > 12: 3.5714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.726 1.0 49 0.9545 0.6393 0.4643 0.5917 0.5904 0.915 0.9008 0.9074 7.7188 16 2 11.8973 6.25
1.1192 2.0 98 0.8062 0.6679 0.4944 0.6206 0.6198 0.9197 0.9081 0.9134 7.7679 15 2 11.9464 4.9107
0.9313 3.0 147 0.7383 0.69 0.5136 0.6436 0.6429 0.9229 0.9139 0.918 7.8616 16 3 12.1607 4.4643
0.8361 4.0 196 0.6998 0.6935 0.5096 0.655 0.6541 0.9218 0.9147 0.9178 8.0134 16 3 12.317 4.4643
0.7703 5.0 245 0.6773 0.6956 0.5188 0.6599 0.6594 0.9212 0.914 0.9171 8.0268 16 3 12.2812 5.8036
0.7075 6.0 294 0.6767 0.7084 0.5298 0.6686 0.6671 0.9256 0.9167 0.9207 7.9241 16 3 12.2054 4.9107
0.6389 7.0 343 0.6764 0.6975 0.5105 0.6541 0.6538 0.9208 0.9149 0.9173 8.0759 16 3 12.4241 5.3571
0.5976 8.0 392 0.6668 0.7066 0.5211 0.669 0.6673 0.9239 0.9146 0.9187 7.7902 16 3 12.1562 3.5714
0.5648 9.0 441 0.6656 0.6958 0.5109 0.6555 0.6541 0.9207 0.9129 0.9163 7.8929 16 3 12.3482 3.5714
0.5495 10.0 490 0.6754 0.7034 0.5113 0.6594 0.659 0.9245 0.9136 0.9186 7.8705 15 3 12.1786 2.6786
0.5188 11.0 539 0.6730 0.6899 0.496 0.646 0.6462 0.9211 0.9094 0.9148 7.7634 15 3 12.183 3.5714
0.4838 12.0 588 0.6929 0.7031 0.5212 0.6576 0.656 0.9232 0.9123 0.9173 7.6964 15 3 12.0491 2.6786
0.4639 13.0 637 0.6917 0.6997 0.5107 0.6512 0.651 0.9196 0.9123 0.9154 7.9732 15 3 12.2902 3.125
0.437 14.0 686 0.7137 0.6965 0.5111 0.6562 0.6553 0.9183 0.9142 0.9158 8.1339 15 3 12.5536 4.9107
0.4348 15.0 735 0.7032 0.697 0.4967 0.6442 0.6429 0.9194 0.9107 0.9146 7.9375 15 3 12.2723 2.2321
0.4134 16.0 784 0.7143 0.7059 0.5124 0.6531 0.6522 0.9207 0.9138 0.9168 7.9554 15 3 12.3393 4.9107
0.4017 17.0 833 0.7179 0.7025 0.5092 0.6541 0.6529 0.92 0.9129 0.916 7.9241 16 3 12.2723 3.125
0.3789 18.0 882 0.7289 0.6973 0.509 0.6468 0.6456 0.9201 0.9127 0.9159 7.9509 15 3 12.3259 3.5714
0.3777 19.0 931 0.7276 0.702 0.5112 0.6485 0.6483 0.9195 0.9133 0.9159 7.9732 16 3 12.3125 3.5714
0.3619 20.0 980 0.7388 0.7009 0.5109 0.6483 0.6472 0.9185 0.9126 0.9151 8.0848 16 3 12.3438 2.6786
0.3494 21.0 1029 0.7469 0.7035 0.5129 0.6506 0.6499 0.918 0.9141 0.9155 8.2902 16 3 12.6295 4.0179
0.3391 22.0 1078 0.7510 0.6934 0.5032 0.6425 0.6417 0.9156 0.9122 0.9135 8.1473 15 3 12.5268 3.125
0.3163 23.0 1127 0.7658 0.6952 0.5072 0.6443 0.6432 0.9177 0.9134 0.9151 8.1875 15 3 12.5268 4.0179
0.3138 24.0 1176 0.7743 0.6901 0.4992 0.6389 0.6385 0.918 0.9105 0.9138 7.9732 15 3 12.2634 2.6786
0.3185 25.0 1225 0.7561 0.7039 0.523 0.6595 0.6601 0.9198 0.9143 0.9165 8.1429 15 3 12.4911 3.125
0.3019 26.0 1274 0.7693 0.6949 0.5044 0.6405 0.6398 0.9179 0.9122 0.9145 8.0893 15 3 12.4688 4.0179
0.2885 27.0 1323 0.7774 0.6991 0.5072 0.6436 0.6425 0.9193 0.9129 0.9156 8.058 14 3 12.433 2.6786
0.2922 28.0 1372 0.7932 0.7038 0.5199 0.6601 0.6599 0.9169 0.915 0.9154 8.2902 15 3 12.7277 4.0179
0.2794 29.0 1421 0.7921 0.7123 0.5251 0.6654 0.6643 0.9215 0.9177 0.9191 8.2098 15 3 12.6027 4.9107
0.2756 30.0 1470 0.7889 0.7072 0.5217 0.6582 0.6577 0.92 0.9144 0.9167 8.0759 15 3 12.4107 2.6786
0.2658 31.0 1519 0.7950 0.7037 0.5197 0.6523 0.6515 0.9192 0.9139 0.916 8.0759 15 3 12.4598 3.125
0.2722 32.0 1568 0.7974 0.7089 0.5267 0.663 0.6628 0.9218 0.915 0.9179 7.9688 14 3 12.2455 2.6786
0.2575 33.0 1617 0.7979 0.7052 0.5199 0.6569 0.6558 0.9186 0.9151 0.9164 8.1116 15 3 12.4955 3.5714
0.2544 34.0 1666 0.7992 0.7082 0.53 0.6608 0.6599 0.9203 0.9168 0.9181 8.1741 14 3 12.567 4.0179
0.2572 35.0 1715 0.8005 0.7123 0.5286 0.664 0.6624 0.922 0.9168 0.919 8.0714 14 3 12.4196 3.5714
0.2455 36.0 1764 0.8001 0.7104 0.5271 0.6634 0.6639 0.9204 0.9166 0.918 8.1295 14 3 12.5268 3.5714
0.2434 37.0 1813 0.8072 0.7112 0.5276 0.6645 0.6632 0.9201 0.9166 0.9178 8.1607 14 3 12.5491 4.0179
0.2375 38.0 1862 0.8120 0.7079 0.5252 0.663 0.6624 0.9199 0.9159 0.9174 8.1741 14 3 12.5357 3.5714
0.2271 39.0 1911 0.8156 0.7017 0.5193 0.655 0.6547 0.9166 0.9153 0.9155 8.2723 14 3 12.7009 3.5714
0.2349 40.0 1960 0.8194 0.7068 0.5246 0.6594 0.6592 0.9209 0.9161 0.9181 8.0982 14 3 12.4464 3.5714
0.2262 41.0 2009 0.8266 0.7107 0.5287 0.6641 0.6634 0.9206 0.9177 0.9187 8.1652 14 3 12.4777 3.5714
0.2154 42.0 2058 0.8313 0.7094 0.5286 0.6636 0.6627 0.9208 0.9176 0.9187 8.1562 14 3 12.5268 3.125
0.2274 43.0 2107 0.8342 0.7101 0.5296 0.6644 0.6639 0.9214 0.9179 0.9192 8.183 14 3 12.5402 3.125
0.2229 44.0 2156 0.8378 0.7077 0.5278 0.6622 0.6616 0.9198 0.9166 0.9178 8.1518 14 3 12.5714 3.125
0.2263 45.0 2205 0.8417 0.7087 0.5293 0.6633 0.6631 0.9197 0.9165 0.9176 8.1652 14 3 12.567 3.125
0.2255 46.0 2254 0.8417 0.7075 0.5248 0.6613 0.6615 0.9198 0.9163 0.9176 8.125 14 3 12.4821 3.125
0.2195 47.0 2303 0.8415 0.708 0.5299 0.6642 0.664 0.9196 0.9167 0.9176 8.183 14 3 12.5804 3.125
0.2036 48.0 2352 0.8412 0.7076 0.5271 0.6626 0.6622 0.9195 0.9166 0.9176 8.2054 14 3 12.6071 3.5714
0.2208 49.0 2401 0.8416 0.7114 0.5306 0.666 0.6653 0.9201 0.9172 0.9182 8.2054 14 3 12.5893 3.5714
0.2088 50.0 2450 0.8420 0.7121 0.5315 0.6662 0.6654 0.9198 0.9174 0.9181 8.2143 14 3 12.6027 3.5714

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v59

Base model

google-t5/t5-small
Finetuned
(1502)
this model