See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 403a8e6e3b0b2154_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/403a8e6e3b0b2154_train_data.json
type:
field_input: ''
field_instruction: title
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/1a8a3888-cec5-4779-b800-5cfb6c37dcbc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/403a8e6e3b0b2154_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 7a6a1ed8-c5e1-4345-8b9e-3d6d127a456b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7a6a1ed8-c5e1-4345-8b9e-3d6d127a456b
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
1a8a3888-cec5-4779-b800-5cfb6c37dcbc
This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0215
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0088 | 1 | 2.2370 |
2.2551 | 0.1150 | 13 | 2.2256 |
2.2253 | 0.2301 | 26 | 2.1877 |
2.1596 | 0.3451 | 39 | 2.1551 |
2.1678 | 0.4602 | 52 | 2.1249 |
2.1606 | 0.5752 | 65 | 2.0949 |
2.0822 | 0.6903 | 78 | 2.0701 |
2.1 | 0.8053 | 91 | 2.0501 |
2.0587 | 0.9204 | 104 | 2.0359 |
2.0516 | 1.0354 | 117 | 2.0272 |
2.0816 | 1.1504 | 130 | 2.0226 |
2.0685 | 1.2655 | 143 | 2.0215 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8