See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: heegyu/WizardVicuna-open-llama-3b-v2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f2dedbddc7d6df54_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f2dedbddc7d6df54_train_data.json
type:
field_input: structural_annotation
field_instruction: sequence
field_output: functional_annotation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/6de2e9ec-707a-4dd2-82b9-25dec22a7e90
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/f2dedbddc7d6df54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 6948954f-ff52-442b-9973-a3e89572c631
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6948954f-ff52-442b-9973-a3e89572c631
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
6de2e9ec-707a-4dd2-82b9-25dec22a7e90
This model is a fine-tuned version of heegyu/WizardVicuna-open-llama-3b-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0725
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0025 | 1 | 0.3835 |
0.2801 | 0.0229 | 9 | 0.2139 |
0.1076 | 0.0459 | 18 | 0.1218 |
0.1126 | 0.0688 | 27 | 0.0984 |
0.0894 | 0.0917 | 36 | 0.0979 |
0.0984 | 0.1146 | 45 | 0.0871 |
0.1058 | 0.1376 | 54 | 0.0827 |
0.0687 | 0.1605 | 63 | 0.0779 |
0.0831 | 0.1834 | 72 | 0.0753 |
0.0814 | 0.2064 | 81 | 0.0738 |
0.0855 | 0.2293 | 90 | 0.0735 |
0.087 | 0.2522 | 99 | 0.0725 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 24
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for leixa/6de2e9ec-707a-4dd2-82b9-25dec22a7e90
Base model
heegyu/WizardVicuna-open-llama-3b-v2