See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-128k
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 082cdc7f5fad29e3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/082cdc7f5fad29e3_train_data.json
type:
field_input: answer_1
field_instruction: question
field_output: answer_2
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/e2c5ab21-4f17-408c-90b5-cc63838c71fd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/082cdc7f5fad29e3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: e2c5ab21-4f17-408c-90b5-cc63838c71fd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e2c5ab21-4f17-408c-90b5-cc63838c71fd
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
e2c5ab21-4f17-408c-90b5-cc63838c71fd
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-13b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6837
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 173
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0173 | 1 | 0.8123 |
2.8254 | 0.2597 | 15 | 0.7221 |
2.6451 | 0.5195 | 30 | 0.6947 |
2.5992 | 0.7792 | 45 | 0.6810 |
2.3153 | 1.0433 | 60 | 0.6709 |
2.2014 | 1.3030 | 75 | 0.6707 |
2.1726 | 1.5628 | 90 | 0.6731 |
2.157 | 1.8225 | 105 | 0.6672 |
1.6831 | 2.0866 | 120 | 0.6776 |
1.8487 | 2.3463 | 135 | 0.6822 |
1.6898 | 2.6061 | 150 | 0.6833 |
1.8026 | 2.8658 | 165 | 0.6837 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Model tree for leixa/e2c5ab21-4f17-408c-90b5-cc63838c71fd
Base model
NousResearch/Yarn-Llama-2-13b-128k