Edit model card

lora_fine_tuned_copa

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6918
  • Accuracy: 0.46
  • F1: 0.4570

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7088 1.0 50 0.6921 0.48 0.48
0.7024 2.0 100 0.6922 0.49 0.4894
0.6993 3.0 150 0.6921 0.46 0.4587
0.7005 4.0 200 0.6920 0.48 0.4788
0.6989 5.0 250 0.6919 0.47 0.4679
0.7018 6.0 300 0.6919 0.46 0.4570
0.6943 7.0 350 0.6919 0.46 0.4570
0.6943 8.0 400 0.6918 0.46 0.4570

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.1
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
16
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lenatr99/lora_fine_tuned_copa

Adapter
(50)
this model