Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 1b64d7adb6ca8fe8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/1b64d7adb6ca8fe8_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: final_decision
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso08/3edceef5-a498-47c3-9fe9-9231833974eb
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/1b64d7adb6ca8fe8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 79901faf-0eea-441b-865e-f4ed7923921d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 79901faf-0eea-441b-865e-f4ed7923921d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

3edceef5-a498-47c3-9fe9-9231833974eb

This model is a fine-tuned version of rayonlabs/merged-merged-af6dd40b-32e1-43b1-adfd-8ce14d65d738-PubMedQA-138437bf-44bd-4b03-8801-d05451a9ff28 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
13.9117 0.0000 1 13.4187
10.5395 0.0002 5 9.1759
7.5453 0.0004 10 2.8711
1.2785 0.0006 15 0.9550
0.2527 0.0008 20 0.4027
0.1511 0.0010 25 0.3593

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso08/3edceef5-a498-47c3-9fe9-9231833974eb