See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: sethuiyer/Medichat-Llama3-8B
bf16: true
chat_template: llama3
datasets:
- data_files:
- 6cbf80929c2d9757_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6cbf80929c2d9757_train_data.json
type:
field_instruction: prompt
field_output: target_true
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso11/8ef54043-c048-479d-a318-de8712ab8f3a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/6cbf80929c2d9757_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8ef54043-c048-479d-a318-de8712ab8f3a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8ef54043-c048-479d-a318-de8712ab8f3a
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
8ef54043-c048-479d-a318-de8712ab8f3a
This model is a fine-tuned version of sethuiyer/Medichat-Llama3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8599
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.4165 | 0.0008 | 1 | 7.5696 |
5.3671 | 0.0070 | 9 | 3.9835 |
1.7655 | 0.0140 | 18 | 1.2891 |
1.2454 | 0.0209 | 27 | 1.0055 |
0.5125 | 0.0279 | 36 | 1.0383 |
1.0024 | 0.0349 | 45 | 0.9972 |
0.9131 | 0.0419 | 54 | 0.9333 |
0.5661 | 0.0488 | 63 | 0.9062 |
0.9249 | 0.0558 | 72 | 0.8808 |
0.9713 | 0.0628 | 81 | 0.8692 |
1.2095 | 0.0698 | 90 | 0.8616 |
0.5188 | 0.0767 | 99 | 0.8599 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for lesso11/8ef54043-c048-479d-a318-de8712ab8f3a
Base model
sethuiyer/Medichat-Llama3-8B