metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: sagemaker-distilbert-emotion-1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9325
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9325
verified: true
- name: Precision Macro
type: precision
value: 0.8890885758596073
verified: true
- name: Precision Micro
type: precision
value: 0.9325
verified: true
- name: Precision Weighted
type: precision
value: 0.9357939294839482
verified: true
- name: Recall Macro
type: recall
value: 0.9037949715525094
verified: true
- name: Recall Micro
type: recall
value: 0.9325
verified: true
- name: Recall Weighted
type: recall
value: 0.9325
verified: true
- name: F1 Macro
type: f1
value: 0.8917817566377219
verified: true
- name: F1 Micro
type: f1
value: 0.9325
verified: true
- name: F1 Weighted
type: f1
value: 0.932691644399741
verified: true
- name: loss
type: loss
value: 0.16507503390312195
verified: true
sagemaker-distilbert-emotion-1
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1651
- Accuracy: 0.9325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.966 | 1.0 | 500 | 0.2497 | 0.921 |
0.1913 | 2.0 | 1000 | 0.1651 | 0.9325 |
0.1037 | 3.0 | 1500 | 0.1501 | 0.9285 |
Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3