Edit model card

Dataset

Japanese subset of the mC4 dataset

Training

Trained for 3000 steps on top of the MPT 7b checkpoint mosaicml/mpt-7b

How to load

Before running this model, please install the following pip package:

pip install einops

To load the model, run the following command.

from transformers import AutoModelForCausalLM

model_name = "lightblue/japanese-mpt-7b"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype='auto',
    trust_remote_code=True
)

To run this model, you may need to load it in a lower precision in order for it to fit onto your GPU. We found for a T4 GPU, it requires loading the model in 8-bit precision. To load the model in 8-bit and 4-bit, please install the following pip packages:

pip install bitsandbytes accelerate

Caution - you will also need enough RAM to load the model. We estimate loading this model requires ~30GB.

Code to load the model in 8 bit
from transformers import AutoModelForCausalLM

model_name = "lightblue/japanese-mpt-7b"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype='auto',
    load_in_8bit=True,
    trust_remote_code=True
)
Code to load the model in 4 bit
from transformers import AutoModelForCausalLM

model_name = "lightblue/japanese-mpt-7b"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype='auto',
    load_in_4bit=True,
    trust_remote_code=True
)

How to use

from transformers import AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

prompt = """A: こんにけは
B: こんにけは
A: ε₯½γγͺγ‚ΉγƒγƒΌγƒ„γ―δ½•γ§γ™γ‹οΌŸ
B: ァッカーです
A: ε₯½γγͺι£ŸγΉη‰©γ―δ½•γ§γ™γ‹οΌŸ
B:"""

pipe(prompt, temperature=0, do_sample=False, return_full_text=False, max_new_tokens=32)
# [{"generated_text": " カレーです
# A: ε₯½γγͺθ‰²γ―δ½•γ§γ™γ‹οΌŸ
# B: 血です"}]
Downloads last month
2,190
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.