metadata
license: other
base_model: lightblue/suzume-llama-3-8B-multilingual
tags:
- generated_from_trainer
model-index:
- name: >-
workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_half_borda
results: []
See axolotl config
axolotl version: 0.4.0
base_model: lightblue/suzume-llama-3-8B-multilingual
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: false
strict: false
rl: orpo
orpo_alpha: 0.1
remove_unused_columns: false
chat_template: chatml
datasets:
- path: lightblue/mitsu_tophalf_borda
type: orpo.chat_template
conversation: llama-3
dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_half_borda
val_set_size: 0.02
output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_half_borda
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: true
use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: mitsu_half_borda
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 20
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_half_borda
This model is a fine-tuned version of lightblue/suzume-llama-3-8B-multilingual on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0935
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.6299 | 0.02 | 1 | 7.7014 |
7.041 | 0.07 | 3 | 3.9786 |
0.6089 | 0.15 | 6 | 0.1393 |
0.1308 | 0.22 | 9 | 0.1244 |
0.1051 | 0.29 | 12 | 0.1112 |
0.1021 | 0.36 | 15 | 0.1063 |
0.0861 | 0.44 | 18 | 0.1026 |
0.1031 | 0.51 | 21 | 0.0979 |
0.0996 | 0.58 | 24 | 0.0967 |
0.0923 | 0.65 | 27 | 0.0960 |
0.1025 | 0.73 | 30 | 0.0944 |
0.1103 | 0.8 | 33 | 0.0939 |
0.0919 | 0.87 | 36 | 0.0937 |
0.104 | 0.94 | 39 | 0.0935 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0