Papadopoulos, Dimitris
Fixed readme.
e3bb387
|
raw
history blame
1.67 kB
metadata
language:
  - el
  - en
tags:
  - translation
widget:
  - text: Κάνω διδακτορικό στην υπολογιστική γλωσσολογία.
license: apache-2.0
metrics:
  - bleu

Greek to English NMT

By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)

  • source languages: el
  • target languages: en
  • licence: apache-2.0
  • dataset: Opus, CCmatrix
  • model: transformer(fairseq)
  • pre-processing: tokenization + BPE segmentation
  • metrics: bleu, chrf

Model description

Trained using the Fairseq framework, transformer_iwslt_de_en architecture.
BPE segmentation (20k codes).
Mixed-case model.

How to use

from transformers import FSMTTokenizer, FSMTForConditionalGeneration

mname = " <your_downloaded_model_folderpath_here> "

tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

text = "Κάνω διδακτορικό στην υπολογιστική γλωσσολογία."

encoded = tokenizer.encode(text, return_tensors='pt')

outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
    i += 1
    print(f"{i}: {output.tolist()}")
    
    decoded = tokenizer.decode(output, skip_special_tokens=True)
    print(f"{i}: {decoded}")

Training data

Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)

Eval results

Results on Tatoeba testset (EL-EN):

BLEU chrF
79.3 0.795

Results on XNLI parallel (EL-EN):

BLEU chrF
66.2 0.623

BibTeX entry and citation info

TODO