File size: 2,821 Bytes
9cd228f
 
 
 
d1d7732
9cd228f
 
 
 
 
 
 
fe7b17a
 
 
9cd228f
 
 
 
 
 
 
 
 
 
 
fe7b17a
 
 
 
 
d64a0f2
 
 
fe7b17a
 
 
 
 
d64a0f2
fe7b17a
 
d64a0f2
 
 
fe7b17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: SeaLLMs/SeaLLM3-7B-Chat
language:
- en
- vi
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
datasets:
- lightontech/tech-viet-translation
pipeline_tag: text-generation
---

# Uploaded  model

- **Developed by:** lightontech
- **License:** apache-2.0
- **Finetuned from model :** SeaLLMs/SeaLLM3-7B-Chat

This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

To use GGUF format for Llama.cpp or running in LM Studio, Jan and other local software, please refer to [lightontech/SeaLightSum3_GGUF](https://huggingface.co/lightontech/SeaLightSum3_GGUF)

# How to use

For faster startup, checkout the [Example notebook here](https://colab.research.google.com/drive/1h6NyOBCzSYrx-nBoRA1X40loIe2oTioA?usp=sharing)

## Install unsloth

This sample use unsloth for colab, you may switch to unsloth only if you want

```
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
```

## Run inference

```python
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

if True:
    from unsloth import FastLanguageModel
    model, tokenizer = FastLanguageModel.from_pretrained(
        model_name = "lightontech/SeaLightSum3-Adapter", # YOUR MODEL YOU USED FOR TRAINING
        max_seq_length = max_seq_length,
        dtype = dtype,
        load_in_4bit = load_in_4bit,
    )
    FastLanguageModel.for_inference(model) # Unsloth has 2x faster inference!

# alpaca_prompt = You MUST copy from above!
FastLanguageModel.for_inference(model) # Unsloth has 2x faster inference!
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Dịch đoạn văn sau sang tiếng Việt:\nOnce you have trained a model using either the SFTTrainer, PPOTrainer, or DPOTrainer, you will have a fine-tuned model that can be used for text generation. In this section, we’ll walk through the process of loading the fine-tuned model and generating text. If you need to run an inference server with the trained model, you can explore libraries such as text-generation-inference.", # instruction
        "", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000)
```