Edit model card

my_awesome_ner-token_classification_v1.0.7-7

This model is a fine-tuned version of NlpHUST/ner-vietnamese-electra-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3324
  • Age: {'precision': 0.8854961832061069, 'recall': 0.8656716417910447, 'f1': 0.8754716981132075, 'number': 134}
  • Datetime: {'precision': 0.6675774134790529, 'recall': 0.7426545086119554, 'f1': 0.7031175059952038, 'number': 987}
  • Disease: {'precision': 0.6914893617021277, 'recall': 0.7442748091603053, 'f1': 0.7169117647058824, 'number': 262}
  • Event: {'precision': 0.3287671232876712, 'recall': 0.34285714285714286, 'f1': 0.3356643356643356, 'number': 280}
  • Gender: {'precision': 0.7529411764705882, 'recall': 0.735632183908046, 'f1': 0.7441860465116279, 'number': 87}
  • Law: {'precision': 0.5590062111801242, 'recall': 0.7058823529411765, 'f1': 0.6239168110918544, 'number': 255}
  • Location: {'precision': 0.6794407042982911, 'recall': 0.7309192200557103, 'f1': 0.7042404723564144, 'number': 1795}
  • Organization: {'precision': 0.6267441860465116, 'recall': 0.712491738268341, 'f1': 0.6668728734921126, 'number': 1513}
  • Person: {'precision': 0.6789052069425902, 'recall': 0.7316546762589928, 'f1': 0.7042936288088643, 'number': 1390}
  • Quantity: {'precision': 0.522273425499232, 'recall': 0.6007067137809188, 'f1': 0.5587510271158588, 'number': 566}
  • Role: {'precision': 0.46021840873634945, 'recall': 0.5393053016453382, 'f1': 0.49663299663299665, 'number': 547}
  • Transportation: {'precision': 0.49645390070921985, 'recall': 0.6086956521739131, 'f1': 0.5468749999999999, 'number': 115}
  • Overall Precision: 0.6251
  • Overall Recall: 0.6930
  • Overall F1: 0.6573
  • Overall Accuracy: 0.8992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Age Datetime Disease Event Gender Law Location Organization Person Quantity Role Transportation Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3138 1.9991 2313 0.3302 {'precision': 0.8721804511278195, 'recall': 0.8656716417910447, 'f1': 0.8689138576779025, 'number': 134} {'precision': 0.6596715328467153, 'recall': 0.7325227963525835, 'f1': 0.6941910705712914, 'number': 987} {'precision': 0.6421725239616614, 'recall': 0.767175572519084, 'f1': 0.6991304347826088, 'number': 262} {'precision': 0.34297520661157027, 'recall': 0.29642857142857143, 'f1': 0.31800766283524906, 'number': 280} {'precision': 0.84, 'recall': 0.7241379310344828, 'f1': 0.7777777777777777, 'number': 87} {'precision': 0.5373134328358209, 'recall': 0.7058823529411765, 'f1': 0.6101694915254238, 'number': 255} {'precision': 0.6927312775330396, 'recall': 0.7008356545961003, 'f1': 0.6967599003046248, 'number': 1795} {'precision': 0.6132789749563191, 'recall': 0.6959682749504296, 'f1': 0.6520123839009287, 'number': 1513} {'precision': 0.704323570432357, 'recall': 0.7266187050359713, 'f1': 0.7152974504249292, 'number': 1390} {'precision': 0.5159817351598174, 'recall': 0.598939929328622, 'f1': 0.55437448896157, 'number': 566} {'precision': 0.4633333333333333, 'recall': 0.5082266910420475, 'f1': 0.4847428073234525, 'number': 547} {'precision': 0.49206349206349204, 'recall': 0.5391304347826087, 'f1': 0.5145228215767634, 'number': 115} 0.6280 0.6766 0.6514 0.9015
0.2556 3.9983 4626 0.3324 {'precision': 0.8854961832061069, 'recall': 0.8656716417910447, 'f1': 0.8754716981132075, 'number': 134} {'precision': 0.6675774134790529, 'recall': 0.7426545086119554, 'f1': 0.7031175059952038, 'number': 987} {'precision': 0.6914893617021277, 'recall': 0.7442748091603053, 'f1': 0.7169117647058824, 'number': 262} {'precision': 0.3287671232876712, 'recall': 0.34285714285714286, 'f1': 0.3356643356643356, 'number': 280} {'precision': 0.7529411764705882, 'recall': 0.735632183908046, 'f1': 0.7441860465116279, 'number': 87} {'precision': 0.5590062111801242, 'recall': 0.7058823529411765, 'f1': 0.6239168110918544, 'number': 255} {'precision': 0.6794407042982911, 'recall': 0.7309192200557103, 'f1': 0.7042404723564144, 'number': 1795} {'precision': 0.6267441860465116, 'recall': 0.712491738268341, 'f1': 0.6668728734921126, 'number': 1513} {'precision': 0.6789052069425902, 'recall': 0.7316546762589928, 'f1': 0.7042936288088643, 'number': 1390} {'precision': 0.522273425499232, 'recall': 0.6007067137809188, 'f1': 0.5587510271158588, 'number': 566} {'precision': 0.46021840873634945, 'recall': 0.5393053016453382, 'f1': 0.49663299663299665, 'number': 547} {'precision': 0.49645390070921985, 'recall': 0.6086956521739131, 'f1': 0.5468749999999999, 'number': 115} 0.6251 0.6930 0.6573 0.8992

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
133M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lilyyellow/my_awesome_ner-token_classification_v1.0.7-7

Finetuned
(3)
this model