liqi03's picture
Upload tokenizer
402fbdc verified
metadata
base_model: openai/whisper-large-v3
datasets:
  - google/fleurs
language:
  - tr
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Large V3 tr ft - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: tr_tr
          split: None
          args: 'config: tr split: test'
        metrics:
          - type: wer
            value: 8.9607965152458
            name: Wer

Whisper Large V3 tr ft - Chee Li

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1394
  • Wer: 8.9608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0368 5.5866 1000 0.1079 7.7474
0.003 11.1732 2000 0.1302 8.6030
0.0016 16.7598 3000 0.1373 8.7974
0.0013 22.3464 4000 0.1394 8.9608

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1