metadata
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- llama-duo/synth_summarize_dataset_dedup
base_model: google/gemma-7b
model-index:
- name: gemma7b-summarize-claude3sonnet-1k
results: []
gemma7b-summarize-claude3sonnet-1k
This model is a fine-tuned version of google/gemma-7b on the llama-duo/synth_summarize_dataset_dedup dataset. It achieves the following results on the evaluation set:
- Loss: 8.5689
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
33.9156 | 0.8 | 2 | 16.5602 |
27.435 | 2.0 | 5 | 13.6870 |
27.435 | 2.8 | 7 | 12.0752 |
17.6281 | 4.0 | 10 | 10.1279 |
17.6281 | 4.8 | 12 | 9.2971 |
15.107 | 6.0 | 15 | 8.7323 |
15.107 | 6.8 | 17 | 8.6064 |
14.5856 | 8.0 | 20 | 8.5689 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1