|
--- |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- generated_from_trainer |
|
datasets: |
|
- llama-duo/synth_summarize_dataset_dedup |
|
base_model: google/gemma-7b |
|
model-index: |
|
- name: gemma7b-summarize-gemini1_5flash-4k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma7b-summarize-gemini1_5flash-4k |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the llama-duo/synth_summarize_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 6.0056 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 45.0263 | 1.0 | 7 | 13.7531 | |
|
| 26.2686 | 2.0 | 14 | 8.7768 | |
|
| 19.4522 | 3.0 | 21 | 7.7116 | |
|
| 17.9837 | 4.0 | 28 | 7.1805 | |
|
| 14.7187 | 5.0 | 35 | 7.0784 | |
|
| 12.1795 | 6.0 | 42 | 7.0367 | |
|
| 9.1407 | 7.0 | 49 | 6.5706 | |
|
| 5.133 | 8.0 | 56 | 6.1854 | |
|
| 4.2385 | 9.0 | 63 | 6.0276 | |
|
| 3.8163 | 10.0 | 70 | 6.0056 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |