|
--- |
|
base_model: kravchenko/uk-mt5-base |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: uk-mt5-base-xlsum-4000 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xlsum |
|
type: xlsum |
|
config: ukrainian |
|
split: validation |
|
args: ukrainian |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 4.2038 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# uk-mt5-base-xlsum-4000 |
|
|
|
This model is a fine-tuned version of [kravchenko/uk-mt5-base](https://huggingface.co/kravchenko/uk-mt5-base) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7909 |
|
- Rouge1: 4.2038 |
|
- Rouge2: 0.6736 |
|
- Rougel: 4.1229 |
|
- Rougelsum: 4.1353 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.871 | 1.0 | 7201 | 1.9992 | 3.157 | 0.5155 | 3.1283 | 3.1298 | |
|
| 2.3902 | 2.0 | 14402 | 1.9162 | 3.6231 | 0.595 | 3.5878 | 3.6125 | |
|
| 2.2273 | 3.0 | 21603 | 1.8681 | 3.8688 | 0.5949 | 3.8101 | 3.8106 | |
|
| 2.1219 | 4.0 | 28804 | 1.8264 | 3.7935 | 0.58 | 3.741 | 3.7647 | |
|
| 2.0448 | 5.0 | 36005 | 1.8062 | 3.9388 | 0.7156 | 3.8877 | 3.9098 | |
|
| 1.9898 | 6.0 | 43206 | 1.8077 | 4.3916 | 0.8113 | 4.3133 | 4.327 | |
|
| 1.9483 | 7.0 | 50407 | 1.7935 | 4.2474 | 0.7119 | 4.1732 | 4.197 | |
|
| 1.9209 | 8.0 | 57608 | 1.7909 | 4.2038 | 0.6736 | 4.1229 | 4.1353 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|