File size: 2,068 Bytes
77bb51f
9b4b620
77bb51f
9b4b620
aaa6259
9b4b620
 
 
 
aaa6259
9b4b620
aaa6259
 
 
9b4b620
 
 
 
aaa6259
9b4b620
 
 
 
 
 
 
aaa6259
9b4b620
 
 
aaa6259
9b4b620
 
 
 
 
 
 
aaa6259
 
9b4b620
 
aaa6259
9b4b620
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: apache-2.0
---

# SLIM-SA-NER-3B-TOOL

<!-- Provide a quick summary of what the model is/does. -->


**slim-sa-ner-3b-tool** is a 4_K_M quantized GGUF version of slim-sa-ner-3b, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.  

This model combines two of the most popular traditional classifier capabilities (sentiment analysis and named entity recognition) and re-images them as function calls on a small specialized decoder LLM, generating output in the form of a python dictionary with keys corresponding to sentiment and NER identifiers.  

[**slim-sa-ner-3b**](https://huggingface.co/llmware/slim-sa-ner-3b) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.

To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/slim-sa-ner-3b-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    
    # to load the model and make a basic inference
    model = ModelCatalog().load_model("slim-sa-ner-3b-tool")
    response = model.function_call(text_sample)  

    # this one line will download the model and run a series of tests
    ModelCatalog().tool_test_run("slim-sa-ner-3b-tool", verbose=True)  


Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:

    from llmware.agents import LLMfx

    llm_fx = LLMfx()
    llm_fx.load_tool("sa-ner")
    response = llm_fx.sa_ner(text)  


Note: please review [**config.json**](https://huggingface.co/llmware/slim-sa-ner-3b-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


## Model Card Contact

Darren Oberst & llmware team  

[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)