File size: 2,068 Bytes
77bb51f 9b4b620 77bb51f 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 aaa6259 9b4b620 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: apache-2.0
---
# SLIM-SA-NER-3B-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-sa-ner-3b-tool** is a 4_K_M quantized GGUF version of slim-sa-ner-3b, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
This model combines two of the most popular traditional classifier capabilities (sentiment analysis and named entity recognition) and re-images them as function calls on a small specialized decoder LLM, generating output in the form of a python dictionary with keys corresponding to sentiment and NER identifiers.
[**slim-sa-ner-3b**](https://huggingface.co/llmware/slim-sa-ner-3b) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-sa-ner-3b-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-sa-ner-3b-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-sa-ner-3b-tool", verbose=True)
Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:
from llmware.agents import LLMfx
llm_fx = LLMfx()
llm_fx.load_tool("sa-ner")
response = llm_fx.sa_ner(text)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-sa-ner-3b-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)
|