flan-t5-small-codesearchnet-python
This model is a fine-tuned version of google/flan-t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0764
- Bleu: 0.0349
- Rouge1: 0.6244
- Rouge2: 0.6055
- Avg Length: 16.9912
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Avg Length |
---|---|---|---|---|---|---|---|
No log | 1.0 | 375 | 0.0636 | 0.0364 | 0.6253 | 0.6076 | 17.029 |
5.5166 | 2.0 | 750 | 0.0553 | 0.0351 | 0.6259 | 0.6081 | 16.9996 |
0.0485 | 3.0 | 1125 | 0.0537 | 0.0351 | 0.6258 | 0.6083 | 16.99 |
0.0409 | 4.0 | 1500 | 0.0524 | 0.0351 | 0.6258 | 0.6082 | 16.9942 |
0.0409 | 5.0 | 1875 | 0.0524 | 0.0351 | 0.6261 | 0.6086 | 16.997 |
0.0345 | 6.0 | 2250 | 0.0526 | 0.0351 | 0.6258 | 0.6081 | 16.9936 |
0.0303 | 7.0 | 2625 | 0.0533 | 0.035 | 0.6254 | 0.6076 | 16.991 |
0.0256 | 8.0 | 3000 | 0.0566 | 0.035 | 0.6257 | 0.6074 | 16.9964 |
0.0256 | 9.0 | 3375 | 0.0592 | 0.0349 | 0.6253 | 0.6074 | 16.998 |
0.0205 | 10.0 | 3750 | 0.0612 | 0.0351 | 0.6255 | 0.6073 | 16.9932 |
0.0185 | 11.0 | 4125 | 0.0639 | 0.035 | 0.6257 | 0.6079 | 16.996 |
0.0157 | 12.0 | 4500 | 0.0698 | 0.035 | 0.625 | 0.6064 | 16.9944 |
0.0157 | 13.0 | 4875 | 0.0720 | 0.035 | 0.6246 | 0.6062 | 16.991 |
0.0131 | 14.0 | 5250 | 0.0745 | 0.035 | 0.6247 | 0.6062 | 16.9986 |
0.0128 | 15.0 | 5625 | 0.0764 | 0.0349 | 0.6244 | 0.6055 | 16.9912 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.