kcz358's picture
Upload tokenizer
91181d7 verified
|
raw
history blame
7.91 kB
metadata
datasets:
  - lmms-lab/LLaVA-OneVision-Data
language:
  - en
  - zh
library_name: transformers
license: apache-2.0
metrics:
  - accuracy
tags:
  - multimodal
model-index:
  - name: llava-onevision-qwen-0.5b-si
    results:
      - task:
          type: multimodal
        dataset:
          name: AI2D
          type: ai2d
        metrics:
          - type: accuracy
            value: 54.2
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: ChartQA
          type: chartqa
        metrics:
          - type: accuracy
            value: 61
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: DocVQA
          type: docvqa
        metrics:
          - type: accuracy
            value: 75
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: InfoVQA
          type: infovqa
        metrics:
          - type: accuracy
            value: 44.8
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MathVerse
          type: mathverse
        metrics:
          - type: accuracy
            value: 17.3
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MathVista
          type: mathvista
        metrics:
          - type: accuracy
            value: 34.6
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMBench
          type: mmbench
        metrics:
          - type: accuracy
            value: 43.8
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MME-Perception
          type: mme-perception
        metrics:
          - type: score
            value: 1217
            name: score
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MME-Cognition
          type: mme-cognition
        metrics:
          - type: score
            value: 272
            name: score
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMMU
          type: mmmu
        metrics:
          - type: accuracy
            value: 31.2
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMVet
          type: mmvet
        metrics:
          - type: accuracy
            value: 26.9
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMStar
          type: mmstar
        metrics:
          - type: accuracy
            value: 36.3
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: Seed-Bench
          type: seed-bench
        metrics:
          - type: accuracy
            value: 63.4
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: Science-QA
          type: science-qa
        metrics:
          - type: accuracy
            value: 67.8
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: ImageDC
          type: imagedc
        metrics:
          - type: accuracy
            value: 83
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: MMLBench
          type: mmlbench
        metrics:
          - type: accuracy
            value: 43.2
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: RealWorldQA
          type: realworldqa
        metrics:
          - type: accuracy
            value: 53.7
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: Vibe-Eval
          type: vibe-eval
        metrics:
          - type: accuracy
            value: 34.9
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: LLaVA-W
          type: llava-w
        metrics:
          - type: accuracy
            value: 71.2
            name: accuracy
            verified: true
      - task:
          type: multimodal
        dataset:
          name: L-Wilder
          type: l-wilder
        metrics:
          - type: accuracy
            value: 51.5
            name: accuracy
            verified: true

LLaVA-OneVision

banner

Play with the model on the LLaVA OneVision Chat.

Table of Contents

  1. Model Summary
  2. Use
  3. Limitations
  4. Training
  5. License
  6. Citation

Model Summary

The LLaVA-OneVision models are 0.5/7/72B parameter models trained on LLaVA-OneVision, based on Qwen2 language model with a context window of 32K tokens.

Use

Intended use

The model was trained on LLaVA-OneVision Dataset and have the ability to interact with images, multi-image and videos.

Feel free to share your generations in the Community tab!

Generation

We provide the simple generation process for using our model. For more details, you could refer to Github.

# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle

from PIL import Image
import requests
import copy
import torch

import sys
import warnings

warnings.filterwarnings("ignore")
pretrained = "lmms-lab/llava-onevision-qwen2-0.5b-si"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map)  # Add any other thing you want to pass in llava_model_args

model.eval()

url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]

conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]


cont = model.generate(
    input_ids,
    images=image_tensor,
    image_sizes=image_sizes,
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)

Training

Model

  • Architecture: SO400M + Qwen2
  • Pretraining Stage: LCS-558K, 1 epoch, projector
  • Mid Stage: A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
  • Final-Image Stage: A mixture of 3.6M single-image data, 1 epoch, full model
  • OneVision Stage: A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
  • Precision: bfloat16

Hardware & Software

Citation

@article{li2024llavaonevision,
      title={LLaVA-OneVision}, 
}