asahi417's picture
model update
128b4e9
|
raw
history blame
18.1 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: ja
datasets:
  - lmqg/qg_jaquad
pipeline_tag: text2text-generation
tags:
  - question generation
  - answer extraction
widget:
  - text: >-
      generate question:
      ゾフィーは貴族出身ではあったが王族出身ではなく、ハプスブルク家の皇位継承者であるフランツ・フェルディナントとの結婚は貴賤結婚となった。皇帝フランツ・ヨーゼフは、2人の間に生まれた子孫が皇位を継がないことを条件として結婚を承認していた。視察が予定されている<hl>6月28日<hl>は2人の14回目の結婚記念日であった。
    example_title: Question Generation Example 1
  - text: >-
      generate question:
      『クマのプーさん』の物語はまず1925年12月24日、『イヴニング・ニュース』紙のクリスマス特集号に短編作品として掲載された。これは『クマのプーさん』の第一章にあたる作品で、このときだけは挿絵をJ.H.ダウドがつけている。その後作品10話と挿絵が整い、刊行に先駆けて「イーヨーの誕生日」のエピソードが1926年8月に『ロイヤルマガジン』に、同年10月9日に『ニューヨーク・イヴニング・ポスト』紙に掲載されたあと、同年10月14日にロンドンで(メシュエン社)、21日にニューヨークで(ダットン社)『クマのプーさん』が刊行された。前著『ぼくたちがとてもちいさかったころ』がすでに大きな成功を収めていたこともあり、イギリスでは初版は前著の7倍に当たる<hl>3万5000部<hl>が刷られた。他方のアメリカでもその年の終わりまでに15万部を売り上げている。ただし依然として人気のあった前著を売り上げで追い越すには数年の時間を要した。
    example_title: Question Generation Example 2
  - text: >-
      generate question:
      フェルメールの作品では、17世紀のオランダの画家、ヨハネス・フェルメールの作品について記述する。フェルメールの作品は、疑問作も含め<hl>30数点<hl>しか現存しない。現存作品はすべて油彩画で、版画、下絵、素描などは残っていない。以下には若干の疑問作も含め、37点の基本情報を記載し、各作品について略説する。収録順序、推定制作年代は『「フェルメールとその時代展」図録』による。日本語の作品タイトルについては、上掲図録のほか、『「フェルメール展」図録』、『フェルメール生涯と作品』による。便宜上「1650年代の作品」「1660年代の作品」「1670年代の作品」の3つの節を設けたが、フェルメールの作品には制作年代不明のものが多く、推定制作年代については研究者や文献によって若干の差がある。
    example_title: Question Generation Example 3
  - text: >-
      extract answers:
      『クマのプーさん』の物語はまず1925年12月24日、『イヴニング・ニュース』紙のクリスマス特集号に短編作品として掲載された。これは『クマのプーさん』の第一章にあたる作品で、このときだけは挿絵をJ.H.ダウドがつけている。その後作品10話と挿絵が整い、刊行に先駆けて「イーヨーの誕生日」のエピソードが1926年8月に『ロイヤルマガジン』に、同年10月9日に『ニューヨーク・イヴニング・ポスト』紙に掲載されたあと、同年10月14日にロンドンで(メシュエン社)、21日にニューヨークで(ダットン社)『クマのプーさん』が刊行された。<hl>前著『ぼくたちがとてもちいさかったころ』がすでに大きな成功を収めていたこともあり、イギリスでは初版は前著の7倍に当たる3万5000部が刷られた。<hl>他方のアメリカでもその年の終わりまでに15万部を売り上げている。ただし依然として人気のあった前著を売り上げで追い越すには数年の時間を要した。
    example_title: Answer Extraction Example 1
  - text: >-
      extract answers:
      フェルメールの作品では、17世紀のオランダの画家、ヨハネス・フェルメールの作品について記述する。フェルメールの作品は、疑問作も含め30数点しか現存しない。<hl>現存作品はすべて油彩画で、版画、下絵、素描などは残っていない。以下には若干の疑問作も含め、37点の基本情報を記載し、各作品について略説する。<hl>収録順序、推定制作年代は『「フェルメールとその時代展」図録』による。日本語の作品タイトルについては、上掲図録のほか、『「フェルメール展」図録』、『フェルメール生涯と作品』による。便宜上「1650年代の作品」「1660年代の作品」「1670年代の作品」の3つの節を設けたが、フェルメールの作品には制作年代不明のものが多く、推定制作年代については研究者や文献によって若干の差がある。
    example_title: Answer Extraction Example 2
model-index:
  - name: lmqg/mt5-base-jaquad-qg-ae
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_jaquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 30.12
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 50.8
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 28.83
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 81.01
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 58.85
          - name: BLEU4 (Question & Answer Generation (with Gold Answer))
            type: bleu4_question_answer_generation_with_gold_answer
            value: 0
          - name: ROUGE-L (Question & Answer Generation (with Gold Answer))
            type: rouge_l_question_answer_generation_with_gold_answer
            value: 0.53
          - name: METEOR (Question & Answer Generation (with Gold Answer))
            type: meteor_question_answer_generation_with_gold_answer
            value: 23.7
          - name: BERTScore (Question & Answer Generation (with Gold Answer))
            type: bertscore_question_answer_generation_with_gold_answer
            value: 64.05
          - name: MoverScore (Question & Answer Generation (with Gold Answer))
            type: moverscore_question_answer_generation_with_gold_answer
            value: 50.99
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation (with
              Gold Answer))
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
            value: 80.35
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
              Answer))
            type: >-
              qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
            value: 83.79
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation (with
              Gold Answer))
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
            value: 77.28
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation (with
              Gold Answer))
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
            value: 56.23
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation (with
              Gold Answer))
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
            value: 58.81
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation (with
              Gold Answer))
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
            value: 54.02
          - name: BLEU4 (Answer Extraction)
            type: bleu4_answer_extraction
            value: 27.35
          - name: ROUGE-L (Answer Extraction)
            type: rouge_l_answer_extraction
            value: 36.81
          - name: METEOR (Answer Extraction)
            type: meteor_answer_extraction
            value: 26.18
          - name: BERTScore (Answer Extraction)
            type: bertscore_answer_extraction
            value: 78.16
          - name: MoverScore (Answer Extraction)
            type: moverscore_answer_extraction
            value: 65.84
          - name: AnswerF1Score (Answer Extraction)
            type: answer_f1_score__answer_extraction
            value: 30.21
          - name: AnswerExactMatch (Answer Extraction)
            type: answer_exact_match_answer_extraction
            value: 30.21

Model Card of lmqg/mt5-base-jaquad-qg-ae

This model is fine-tuned version of google/mt5-base for question generation and answer extraction jointly on the lmqg/qg_jaquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ja", model="lmqg/mt5-base-jaquad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("フェルメールの作品では、17世紀のオランダの画家、ヨハネス・フェルメールの作品について記述する。フェルメールの作品は、疑問作も含め30数点しか現存しない。現存作品はすべて油彩画で、版画、下絵、素描などは残っていない。")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-jaquad-qg-ae")

# answer extraction
answer = pipe("generate question: ゾフィーは貴族出身ではあったが王族出身ではなく、ハプスブルク家の皇位継承者であるフランツ・フェルディナントとの結婚は貴賤結婚となった。皇帝フランツ・ヨーゼフは、2人の間に生まれた子孫が皇位を継がないことを条件として結婚を承認していた。視察が予定されている<hl>6月28日<hl>は2人の14回目の結婚記念日であった。")

# question generation
question = pipe("extract answers: 『クマのプーさん』の物語はまず1925年12月24日、『イヴニング・ニュース』紙のクリスマス特集号に短編作品として掲載された。これは『クマのプーさん』の第一章にあたる作品で、このときだけは挿絵をJ.H.ダウドがつけている。その後作品10話と挿絵が整い、刊行に先駆けて「イーヨーの誕生日」のエピソードが1926年8月に『ロイヤルマガジン』に、同年10月9日に『ニューヨーク・イヴニング・ポスト』紙に掲載されたあと、同年10月14日にロンドンで(メシュエン社)、21日にニューヨークで(ダットン社)『クマのプーさん』が刊行された。<hl>前著『ぼくたちがとてもちいさかったころ』がすでに大きな成功を収めていたこともあり、イギリスでは初版は前著の7倍に当たる3万5000部が刷られた。<hl>他方のアメリカでもその年の終わりまでに15万部を売り上げている。ただし依然として人気のあった前著を売り上げで追い越すには数年の時間を要した。")

Evaluation

Score Type Dataset
BERTScore 81.01 default lmqg/qg_jaquad
Bleu_1 55.86 default lmqg/qg_jaquad
Bleu_2 43.75 default lmqg/qg_jaquad
Bleu_3 35.88 default lmqg/qg_jaquad
Bleu_4 30.12 default lmqg/qg_jaquad
METEOR 28.83 default lmqg/qg_jaquad
MoverScore 58.85 default lmqg/qg_jaquad
ROUGE_L 50.8 default lmqg/qg_jaquad
Score Type Dataset
BERTScore 64.05 default lmqg/qg_jaquad
Bleu_1 0.25 default lmqg/qg_jaquad
Bleu_2 0.01 default lmqg/qg_jaquad
Bleu_3 0 default lmqg/qg_jaquad
Bleu_4 0 default lmqg/qg_jaquad
METEOR 23.7 default lmqg/qg_jaquad
MoverScore 50.99 default lmqg/qg_jaquad
QAAlignedF1Score (BERTScore) 80.35 default lmqg/qg_jaquad
QAAlignedF1Score (MoverScore) 56.23 default lmqg/qg_jaquad
QAAlignedPrecision (BERTScore) 77.28 default lmqg/qg_jaquad
QAAlignedPrecision (MoverScore) 54.02 default lmqg/qg_jaquad
QAAlignedRecall (BERTScore) 83.79 default lmqg/qg_jaquad
QAAlignedRecall (MoverScore) 58.81 default lmqg/qg_jaquad
ROUGE_L 0.53 default lmqg/qg_jaquad
Score Type Dataset
AnswerExactMatch 30.21 default lmqg/qg_jaquad
AnswerF1Score 30.21 default lmqg/qg_jaquad
BERTScore 78.16 default lmqg/qg_jaquad
Bleu_1 34.67 default lmqg/qg_jaquad
Bleu_2 31.79 default lmqg/qg_jaquad
Bleu_3 29.28 default lmqg/qg_jaquad
Bleu_4 27.35 default lmqg/qg_jaquad
METEOR 26.18 default lmqg/qg_jaquad
MoverScore 65.84 default lmqg/qg_jaquad
ROUGE_L 36.81 default lmqg/qg_jaquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_jaquad
  • dataset_name: default
  • input_types: ['paragraph_answer', 'paragraph_sentence']
  • output_types: ['question', 'answer']
  • prefix_types: ['qg', 'ae']
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 32
  • epoch: 9
  • batch: 32
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 2
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}