|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: train |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9387001477104875 |
|
- name: Recall |
|
type: recall |
|
value: 0.9513473053892215 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9449814126394053 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9567062818336163 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2137 |
|
- Precision: 0.9387 |
|
- Recall: 0.9513 |
|
- F1: 0.9450 |
|
- Accuracy: 0.9567 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.56 | 250 | 1.0609 | 0.6596 | 0.7440 | 0.6993 | 0.7687 | |
|
| 1.4193 | 3.12 | 500 | 0.5989 | 0.8403 | 0.8623 | 0.8511 | 0.8663 | |
|
| 1.4193 | 4.69 | 750 | 0.4037 | 0.8795 | 0.9012 | 0.8902 | 0.9087 | |
|
| 0.4182 | 6.25 | 1000 | 0.3264 | 0.8980 | 0.9162 | 0.9070 | 0.9257 | |
|
| 0.4182 | 7.81 | 1250 | 0.2705 | 0.9190 | 0.9341 | 0.9265 | 0.9410 | |
|
| 0.2258 | 9.38 | 1500 | 0.2450 | 0.9311 | 0.9401 | 0.9356 | 0.9461 | |
|
| 0.2258 | 10.94 | 1750 | 0.2350 | 0.9341 | 0.9439 | 0.9389 | 0.9491 | |
|
| 0.1576 | 12.5 | 2000 | 0.2219 | 0.9350 | 0.9476 | 0.9413 | 0.9508 | |
|
| 0.1576 | 14.06 | 2250 | 0.2122 | 0.9373 | 0.9506 | 0.9439 | 0.9559 | |
|
| 0.1207 | 15.62 | 2500 | 0.2137 | 0.9387 | 0.9513 | 0.9450 | 0.9567 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|