samba-1.1B / README.md
lrds-code's picture
Update README.md
d4abf5e verified
metadata
language:
  - pt
license: llama2
tags:
  - Portuguese
  - Tiny-Llama
  - PEFT
widget:
  - example_title: Pedro Álvares Cabral
    messages:
      - role: system
        content: Você é um historiador que é especialista em história do Brasil.
      - role: user
        content: Quem foi Pedro Álvares Cabral?

README


Samba Logo

Samba é um LLM treinado em dados da língua portuguesa. O modelo é baseado no TinyLlama-1.1B, uma versão de 1.1B parâmetros do LLaMA-2.

Countries Logo

Descrição do Modelo

Como usar

import torch
from transformers import pipeline

samba = pipeline('text-generation', model='lrds-code/samba-1.1B', torch_dtype=torch.bfloat16, device_map='auto')

messages = [{'role':'system',
             'content':''},
            {'role':'user',
             'content':'Quantos planetas existem no sistema solar?'}]

prompt = samba.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = samba(prompt, max_new_tokens=256, do_sample=False, temperature=0.1, top_k=50, top_p=0.95, repetition_penalty=1.1, do_sample=False)
print(outputs[0]['generated_text'])

Parâmetros Importantes

  • repetition_penalty: é utilizado para evitar a repetição de palavras ou frases. Quando esse valor é ajustado para ser maior que 1, o modelo tenta diminuir a probabilidade de gerar palavras que já apareceram anteriormente. Basicamente, quanto maior o valor, mais o modelo tenta evitar repetições.
  • do_sample: determina se o modelo deve ou não amostrar aleatoriamente a próxima palavra com base nas probabilidades calculadas. Portanto, do_sample=True introduz variação e imprevisibilidade no texto gerado, enquanto que se do_sample=False o modelo escolherá sempre a palavra mais provável como próxima palavra, o que pode levar a saídas mais determinísticas e, possivelmente, mais repetitivas.
  • temperature: afeta a aleatoriedade na escolha da próxima palavra. Um valor baixo (próximo de 0) faz com que o modelo seja mais "confiante" nas suas escolhas, favorecendo palavras com alta probabilidade e levando a saídas mais previsíveis. Por outro lado, um valor alto aumenta a aleatoriedade, permitindo que o modelo escolha palavras menos prováveis, o que pode tornar o texto gerado mais variado e criativo.