|
--- |
|
language: |
|
- 'no' |
|
- nb |
|
- nn |
|
inference: true |
|
tags: |
|
- BERT |
|
- NorBERT |
|
- Norwegian |
|
- encoder |
|
license: apache-2.0 |
|
--- |
|
|
|
# NorBERT 3 large |
|
|
|
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%> |
|
|
|
The official release of a new generation of NorBERT language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://aclanthology.org/2023.nodalida-1.61/). Plese read the paper to learn more details about the model. |
|
|
|
|
|
## Other sizes: |
|
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs) |
|
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small) |
|
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base) |
|
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large) |
|
|
|
## Generative NorT5 siblings: |
|
- [NorT5 xs (32M)](https://huggingface.co/ltg/nort5-xs) |
|
- [NorT5 small (88M)](https://huggingface.co/ltg/nort5-small) |
|
- [NorT5 base (228M)](https://huggingface.co/ltg/nort5-base) |
|
- [NorT5 large (808M)](https://huggingface.co/ltg/nort5-large) |
|
|
|
|
|
## Example usage |
|
|
|
This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("ltg/norbert3-large") |
|
model = AutoModelForMaskedLM.from_pretrained("ltg/norbert3-large", trust_remote_code=True) |
|
|
|
mask_id = tokenizer.convert_tokens_to_ids("[MASK]") |
|
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt") |
|
output_p = model(**input_text) |
|
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids) |
|
|
|
# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]' |
|
print(tokenizer.decode(output_text[0].tolist())) |
|
``` |
|
|
|
The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`. |
|
|
|
## Cite us |
|
|
|
```bibtex |
|
@inproceedings{samuel-etal-2023-norbench, |
|
title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models", |
|
author = "Samuel, David and |
|
Kutuzov, Andrey and |
|
Touileb, Samia and |
|
Velldal, Erik and |
|
{\O}vrelid, Lilja and |
|
R{\o}nningstad, Egil and |
|
Sigdel, Elina and |
|
Palatkina, Anna", |
|
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", |
|
month = may, |
|
year = "2023", |
|
address = "T{\'o}rshavn, Faroe Islands", |
|
publisher = "University of Tartu Library", |
|
url = "https://aclanthology.org/2023.nodalida-1.61", |
|
pages = "618--633", |
|
abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.", |
|
} |
|
|
|
``` |