metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:234000
- loss:MSELoss
base_model: google-bert/bert-base-multilingual-cased
widget:
- source_sentence: who sings in spite of ourselves with john prine
sentences:
- es
- når ble michael jordan draftet til nba
- quien canta en spite of ourselves con john prine
- source_sentence: who wrote when you look me in the eyes
sentences:
- متى بدأت الفتاة الكشفية في بيع ملفات تعريف الارتباط
- A écrit when you look me in the eyes
- fr
- source_sentence: when was fathers day made a national holiday
sentences:
- wann wurde der Vatertag zum nationalen Feiertag
- de
- ' អ្នកណាច្រៀង i want to sing you a love song'
- source_sentence: what is the density of the continental crust
sentences:
- cuál es la densidad de la corteza continental
- wie zingt i want to sing you a love song
- es
- source_sentence: who wrote the song i shot the sheriff
sentences:
- Quel est l'âge légal pour consommer du vin au Canada?
- i shot the sheriff şarkısını kim besteledi
- tr
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- negative_mse
model-index:
- name: SentenceTransformer based on google-bert/bert-base-multilingual-cased
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ar
type: MSE-val-en-to-ar
metrics:
- type: negative_mse
value: -18.93259286880493
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to da
type: MSE-val-en-to-da
metrics:
- type: negative_mse
value: -15.68576693534851
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to de
type: MSE-val-en-to-de
metrics:
- type: negative_mse
value: -16.125640273094177
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to en
type: MSE-val-en-to-en
metrics:
- type: negative_mse
value: -13.388358056545258
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to es
type: MSE-val-en-to-es
metrics:
- type: negative_mse
value: -15.648126602172852
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to fi
type: MSE-val-en-to-fi
metrics:
- type: negative_mse
value: -17.174141108989716
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to fr
type: MSE-val-en-to-fr
metrics:
- type: negative_mse
value: -15.814268589019775
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to he
type: MSE-val-en-to-he
metrics:
- type: negative_mse
value: -18.483880162239075
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to hu
type: MSE-val-en-to-hu
metrics:
- type: negative_mse
value: -17.58536398410797
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to it
type: MSE-val-en-to-it
metrics:
- type: negative_mse
value: -15.706634521484375
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ja
type: MSE-val-en-to-ja
metrics:
- type: negative_mse
value: -17.800691723823547
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ko
type: MSE-val-en-to-ko
metrics:
- type: negative_mse
value: -19.26662176847458
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to km
type: MSE-val-en-to-km
metrics:
- type: negative_mse
value: -28.38749885559082
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ms
type: MSE-val-en-to-ms
metrics:
- type: negative_mse
value: -15.783128142356873
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to nl
type: MSE-val-en-to-nl
metrics:
- type: negative_mse
value: -15.027229487895966
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to no
type: MSE-val-en-to-no
metrics:
- type: negative_mse
value: -15.598368644714355
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to pl
type: MSE-val-en-to-pl
metrics:
- type: negative_mse
value: -16.64138436317444
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to pt
type: MSE-val-en-to-pt
metrics:
- type: negative_mse
value: -15.76906442642212
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to ru
type: MSE-val-en-to-ru
metrics:
- type: negative_mse
value: -16.91163182258606
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to sv
type: MSE-val-en-to-sv
metrics:
- type: negative_mse
value: -15.555775165557861
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to th
type: MSE-val-en-to-th
metrics:
- type: negative_mse
value: -18.37025284767151
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to tr
type: MSE-val-en-to-tr
metrics:
- type: negative_mse
value: -16.945864260196686
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to vi
type: MSE-val-en-to-vi
metrics:
- type: negative_mse
value: -16.482776403427124
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to zh cn
type: MSE-val-en-to-zh_cn
metrics:
- type: negative_mse
value: -16.996394097805023
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to zh hk
type: MSE-val-en-to-zh_hk
metrics:
- type: negative_mse
value: -16.82070791721344
name: Negative Mse
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: MSE val en to zh tw
type: MSE-val-en-to-zh_tw
metrics:
- type: negative_mse
value: -17.381685972213745
name: Negative Mse
SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-cased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/bert-base-multilingual-cased-matryoshka-mkqa")
# Run inference
sentences = [
'who wrote the song i shot the sheriff',
'i shot the sheriff şarkısını kim besteledi',
'tr',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Datasets:
MSE-val-en-to-ar
,MSE-val-en-to-da
,MSE-val-en-to-de
,MSE-val-en-to-en
,MSE-val-en-to-es
,MSE-val-en-to-fi
,MSE-val-en-to-fr
,MSE-val-en-to-he
,MSE-val-en-to-hu
,MSE-val-en-to-it
,MSE-val-en-to-ja
,MSE-val-en-to-ko
,MSE-val-en-to-km
,MSE-val-en-to-ms
,MSE-val-en-to-nl
,MSE-val-en-to-no
,MSE-val-en-to-pl
,MSE-val-en-to-pt
,MSE-val-en-to-ru
,MSE-val-en-to-sv
,MSE-val-en-to-th
,MSE-val-en-to-tr
,MSE-val-en-to-vi
,MSE-val-en-to-zh_cn
,MSE-val-en-to-zh_hk
andMSE-val-en-to-zh_tw
- Evaluated with
MSEEvaluator
Metric | MSE-val-en-to-ar | MSE-val-en-to-da | MSE-val-en-to-de | MSE-val-en-to-en | MSE-val-en-to-es | MSE-val-en-to-fi | MSE-val-en-to-fr | MSE-val-en-to-he | MSE-val-en-to-hu | MSE-val-en-to-it | MSE-val-en-to-ja | MSE-val-en-to-ko | MSE-val-en-to-km | MSE-val-en-to-ms | MSE-val-en-to-nl | MSE-val-en-to-no | MSE-val-en-to-pl | MSE-val-en-to-pt | MSE-val-en-to-ru | MSE-val-en-to-sv | MSE-val-en-to-th | MSE-val-en-to-tr | MSE-val-en-to-vi | MSE-val-en-to-zh_cn | MSE-val-en-to-zh_hk | MSE-val-en-to-zh_tw |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
negative_mse | -18.9326 | -15.6858 | -16.1256 | -13.3884 | -15.6481 | -17.1741 | -15.8143 | -18.4839 | -17.5854 | -15.7066 | -17.8007 | -19.2666 | -28.3875 | -15.7831 | -15.0272 | -15.5984 | -16.6414 | -15.7691 | -16.9116 | -15.5558 | -18.3703 | -16.9459 | -16.4828 | -16.9964 | -16.8207 | -17.3817 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 234,000 training samples
- Columns:
english
,non-english
,target
, andlabel
- Approximate statistics based on the first 1000 samples:
english non-english target label type string string string list details - min: 10 tokens
- mean: 12.34 tokens
- max: 18 tokens
- min: 3 tokens
- mean: 14.41 tokens
- max: 49 tokens
- min: 3 tokens
- mean: 3.38 tokens
- max: 7 tokens
- size: 768 elements
- Samples:
english non-english target label who plays hope on days of our lives
من الذي يلعب الأمل في أيام حياتنا
ar
[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]
who plays hope on days of our lives
hvem spiller hope i Horton-sagaen
da
[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]
who plays hope on days of our lives
Wer spielt die Hope in Zeit der Sehnsucht?
de
[0.2171212136745453, 0.5138550996780396, 0.5517176389694214, -1.0655105113983154, 1.5853567123413086, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 13,000 evaluation samples
- Columns:
english
,non-english
,target
, andlabel
- Approximate statistics based on the first 1000 samples:
english non-english target label type string string string list details - min: 10 tokens
- mean: 12.44 tokens
- max: 16 tokens
- min: 3 tokens
- mean: 14.48 tokens
- max: 49 tokens
- min: 3 tokens
- mean: 3.38 tokens
- max: 7 tokens
- size: 768 elements
- Samples:
english non-english target label who played prudence on nanny and the professor
من لعب دور "prudence" فى "nanny and the professor"
ar
[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]
who played prudence on nanny and the professor
hvem spiller prudence på nanny and the professor
da
[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]
who played prudence on nanny and the professor
Wer spielte Prudence in Nanny and the Professor
de
[-0.2837616801261902, -0.4943353235721588, 0.020107418298721313, 0.7796109318733215, -0.47365888953208923, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 1e-05num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | MSE-val-en-to-ar_negative_mse | MSE-val-en-to-da_negative_mse | MSE-val-en-to-de_negative_mse | MSE-val-en-to-en_negative_mse | MSE-val-en-to-es_negative_mse | MSE-val-en-to-fi_negative_mse | MSE-val-en-to-fr_negative_mse | MSE-val-en-to-he_negative_mse | MSE-val-en-to-hu_negative_mse | MSE-val-en-to-it_negative_mse | MSE-val-en-to-ja_negative_mse | MSE-val-en-to-ko_negative_mse | MSE-val-en-to-km_negative_mse | MSE-val-en-to-ms_negative_mse | MSE-val-en-to-nl_negative_mse | MSE-val-en-to-no_negative_mse | MSE-val-en-to-pl_negative_mse | MSE-val-en-to-pt_negative_mse | MSE-val-en-to-ru_negative_mse | MSE-val-en-to-sv_negative_mse | MSE-val-en-to-th_negative_mse | MSE-val-en-to-tr_negative_mse | MSE-val-en-to-vi_negative_mse | MSE-val-en-to-zh_cn_negative_mse | MSE-val-en-to-zh_hk_negative_mse | MSE-val-en-to-zh_tw_negative_mse |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1367 | 500 | 0.3783 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2734 | 1000 | 0.3256 | 0.3071 | -30.0050 | -29.7152 | -29.7584 | -29.5204 | -29.6875 | -29.9032 | -29.6918 | -29.9795 | -29.9430 | -29.7142 | -29.8220 | -30.0745 | -32.1218 | -29.8042 | -29.7132 | -29.7625 | -29.7677 | -29.6658 | -29.8250 | -29.8242 | -30.1233 | -29.8640 | -29.7497 | -29.6833 | -29.7296 | -29.7063 |
0.4102 | 1500 | 0.3007 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5469 | 2000 | 0.2795 | 0.2663 | -25.0193 | -23.8364 | -23.9924 | -22.8145 | -23.7158 | -24.4490 | -23.7719 | -24.6885 | -24.5973 | -23.7662 | -24.4998 | -25.3625 | -30.9153 | -24.0474 | -23.5674 | -23.7934 | -24.1332 | -23.6279 | -24.1308 | -23.8860 | -25.4166 | -24.4840 | -24.1931 | -24.0816 | -24.0634 | -24.2529 |
0.6836 | 2500 | 0.2659 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8203 | 3000 | 0.2562 | 0.2487 | -22.9862 | -21.2544 | -21.4573 | -19.8714 | -21.1251 | -22.1884 | -21.1984 | -22.6963 | -22.3069 | -21.1959 | -22.3180 | -23.4410 | -30.2373 | -21.4324 | -20.8799 | -21.1834 | -21.7427 | -21.1291 | -21.7291 | -21.3003 | -23.2994 | -22.1537 | -21.7480 | -21.7521 | -21.6844 | -21.9702 |
0.9571 | 3500 | 0.2475 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0938 | 4000 | 0.2411 | 0.2375 | -21.8220 | -19.6064 | -19.9128 | -17.9872 | -19.5372 | -20.7666 | -19.6563 | -21.4985 | -20.9295 | -19.6182 | -20.9963 | -22.2441 | -29.7291 | -19.8001 | -19.2003 | -19.5189 | -20.2697 | -19.5946 | -20.3160 | -19.6652 | -21.9553 | -20.6678 | -20.2305 | -20.3719 | -20.2700 | -20.6528 |
1.2305 | 4500 | 0.2351 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3672 | 5000 | 0.23 | 0.2296 | -21.0058 | -18.4861 | -18.7926 | -16.6395 | -18.4034 | -19.7517 | -18.5299 | -20.6663 | -19.9769 | -18.4977 | -20.0496 | -21.4171 | -29.3272 | -18.6213 | -17.9746 | -18.3449 | -19.2392 | -18.4960 | -19.3377 | -18.5079 | -20.9805 | -19.5803 | -19.1385 | -19.4256 | -19.2708 | -19.7140 |
1.5040 | 5500 | 0.2257 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6407 | 6000 | 0.2222 | 0.2245 | -20.4317 | -17.7592 | -18.1037 | -15.7487 | -17.6947 | -19.0287 | -17.8518 | -20.1401 | -19.3864 | -17.7539 | -19.4615 | -20.8562 | -29.1081 | -17.8707 | -17.1892 | -17.6230 | -18.5879 | -17.7857 | -18.7075 | -17.7347 | -20.2941 | -18.8814 | -18.4449 | -18.8036 | -18.6146 | -19.1169 |
1.7774 | 6500 | 0.2186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9141 | 7000 | 0.2158 | 0.2199 | -19.9961 | -17.0956 | -17.4488 | -14.9930 | -17.0238 | -18.4442 | -17.1720 | -19.6005 | -18.7765 | -17.1020 | -18.8972 | -20.3720 | -28.8656 | -17.1949 | -16.4824 | -16.9655 | -17.9687 | -17.1229 | -18.0911 | -17.0128 | -19.6600 | -18.2823 | -17.8109 | -18.2341 | -18.0582 | -18.5735 |
2.0509 | 7500 | 0.2135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1876 | 8000 | 0.2109 | 0.2167 | -19.6376 | -16.6362 | -17.0307 | -14.4461 | -16.5766 | -18.0419 | -16.7080 | -19.2403 | -18.3971 | -16.6443 | -18.5251 | -20.0263 | -28.7414 | -16.7279 | -15.9992 | -16.5092 | -17.5170 | -16.6766 | -17.7151 | -16.5403 | -19.2861 | -17.8316 | -17.3764 | -17.8453 | -17.6606 | -18.1844 |
2.3243 | 8500 | 0.2088 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4610 | 9000 | 0.2074 | 0.2149 | -19.4358 | -16.3728 | -16.7740 | -14.1447 | -16.3289 | -17.8191 | -16.4582 | -19.0369 | -18.1738 | -16.3903 | -18.3565 | -19.8207 | -28.6133 | -16.4804 | -15.7354 | -16.2673 | -17.3034 | -16.4190 | -17.4826 | -16.2566 | -18.9971 | -17.5950 | -17.1273 | -17.6066 | -17.4124 | -17.9799 |
2.5978 | 9500 | 0.2059 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7345 | 10000 | 0.2047 | 0.2134 | -19.2764 | -16.1718 | -16.5449 | -13.8928 | -16.1098 | -17.5866 | -16.2421 | -18.8665 | -17.9798 | -16.1538 | -18.1695 | -19.6218 | -28.5605 | -16.2479 | -15.4962 | -16.0522 | -17.0797 | -16.2106 | -17.3130 | -16.0278 | -18.8206 | -17.3910 | -16.9231 | -17.4203 | -17.2266 | -17.7903 |
2.8712 | 10500 | 0.2033 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.0079 | 11000 | 0.2024 | 0.2120 | -19.1026 | -15.9149 | -16.3497 | -13.6750 | -15.8828 | -17.3842 | -16.0397 | -18.6612 | -17.7796 | -15.9436 | -17.9779 | -19.4370 | -28.4678 | -16.0245 | -15.2818 | -15.8265 | -16.8594 | -15.9988 | -17.1163 | -15.8106 | -18.5870 | -17.1548 | -16.7074 | -17.2082 | -17.0233 | -17.5910 |
3.1447 | 11500 | 0.201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.2814 | 12000 | 0.2004 | 0.2112 | -19.0406 | -15.8196 | -16.2516 | -13.5420 | -15.7688 | -17.2734 | -15.9280 | -18.5894 | -17.6966 | -15.8265 | -17.8933 | -19.3785 | -28.4539 | -15.9129 | -15.1631 | -15.7175 | -16.7540 | -15.8974 | -17.0251 | -15.6875 | -18.4807 | -17.0615 | -16.6087 | -17.1051 | -16.9423 | -17.4923 |
3.4181 | 12500 | 0.1997 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.5548 | 13000 | 0.1995 | 0.2108 | -18.9779 | -15.7524 | -16.1996 | -13.4723 | -15.7211 | -17.2272 | -15.8790 | -18.5412 | -17.6416 | -15.7862 | -17.8502 | -19.3124 | -28.4179 | -15.8513 | -15.1030 | -15.6645 | -16.7053 | -15.8355 | -16.9742 | -15.6246 | -18.4384 | -17.0053 | -16.5478 | -17.0674 | -16.8851 | -17.4527 |
3.6916 | 13500 | 0.1991 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.8283 | 14000 | 0.1987 | 0.2103 | -18.9326 | -15.6858 | -16.1256 | -13.3884 | -15.6481 | -17.1741 | -15.8143 | -18.4839 | -17.5854 | -15.7066 | -17.8007 | -19.2666 | -28.3875 | -15.7831 | -15.0272 | -15.5984 | -16.6414 | -15.7691 | -16.9116 | -15.5558 | -18.3703 | -16.9459 | -16.4828 | -16.9964 | -16.8207 | -17.3817 |
3.9650 | 14500 | 0.1989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}