SentenceTransformer based on google-bert/bert-base-multilingual-cased

This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-bert/bert-base-multilingual-cased
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/bert-en-es-pt-matryoshka_v2")
# Run inference
sentences = [
    'There are thousands of these blue dots all over the county.',
    'Hay miles de estos puntos azules en todo el condado.',
    'Me gusta crisis climática en vez de colapso climático, pero de nuevo, aquellos de ustedes que son buenos en diseño de marcas, necesito su ayuda en esto.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

  • Datasets: MSE-val-en-es, MSE-val-en-pt and MSE-val-en-pt-br
  • Evaluated with MSEEvaluator
Metric MSE-val-en-es MSE-val-en-pt MSE-val-en-pt-br
negative_mse -32.0329 -32.2705 -30.5909

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,560,698 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 25.46 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 26.67 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    english non_english label
    And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number. Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos. [-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]
    One thing I often ask about is ancient Greek and how this relates. Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona. [0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]
    See, the thing we're doing right now is we're forcing people to learn mathematics. Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas. [-0.01942082867026329, 0.1043599545955658, 0.009455358609557152, -0.02814248949289322, -0.017036128789186478, ...]
  • Loss: main.ModifiedMatryoshkaLoss with these parameters:
    {
        "loss": "MSELoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 6,974 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 25.68 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 27.31 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    english non_english label
    Thank you so much, Chris. Muchas gracias Chris. [-0.0616779625415802, -0.04450426995754242, -0.03250579163432121, -0.06641441583633423, 0.003981655463576317, ...]
    And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful. Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido. [0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]
    I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night. He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche. [-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]
  • Loss: main.ModifiedMatryoshkaLoss with these parameters:
    {
        "loss": "MSELoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 200
  • per_device_eval_batch_size: 200
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • max_steps: 5000
  • warmup_ratio: 0.1
  • fp16: True
  • label_names: ['label']

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 200
  • per_device_eval_batch_size: 200
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: 5000
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: ['label']
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss MSE-val-en-es_negative_mse MSE-val-en-pt_negative_mse MSE-val-en-pt-br_negative_mse
0.0781 1000 0.0252 0.0231 -24.4152 -24.3443 -25.3002
0.1562 2000 0.0222 0.0212 -25.3038 -25.3995 -24.8563
0.2343 3000 0.021 0.0204 -27.0894 -27.2195 -26.2906
0.3124 4000 0.0204 0.0198 -28.7895 -28.9815 -28.0121
0.3905 5000 0.02 0.0194 -29.1917 -29.3694 -28.0828
0.4686 6000 0.0196 0.0191 -30.0902 -30.2569 -28.9723
0.5467 7000 0.0194 0.0189 -30.3385 -30.5334 -29.1280
0.6248 8000 0.0192 0.0188 -30.6629 -30.8491 -29.4291
0.7029 9000 0.0191 0.0186 -30.6934 -30.8920 -29.4820
0.7810 10000 0.019 0.0185 -31.0134 -31.2205 -29.6545
0.8591 11000 0.0189 0.0185 -31.0993 -31.2950 -29.8062
0.9372 12000 0.0188 0.0184 -31.0707 -31.2847 -29.7483
0.0781 1000 0.0188 0.0184 -31.6211 -31.8237 -30.2854
0.1562 2000 0.0186 0.0182 -31.6994 -31.9203 -30.3186
0.2343 3000 0.0184 0.0181 -31.8023 -32.0229 -30.3928
0.3124 4000 0.0183 0.0180 -32.0537 -32.2930 -30.6803
0.3905 5000 0.0182 0.0179 -32.0329 -32.2705 -30.5909

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
3
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for luanafelbarros/bert-en-es-pt-matryoshka_v2

Finetuned
(622)
this model

Evaluation results