SentenceTransformer based on google-bert/bert-base-multilingual-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-multilingual-cased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("luanafelbarros/bert-en-es-pt-matryoshka_v3")
# Run inference
sentences = [
'All the grayed-out species disappear.',
'Van a desaparecer todas las especies en gris.',
'Los diamantes: quizá todos hemos oído hablar de la película "Diamante de sangre".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Datasets:
MSE-val-en-es
,MSE-val-en-pt
andMSE-val-en-pt-br
- Evaluated with
MSEEvaluator
Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br |
---|---|---|---|
negative_mse | -33.7751 | -34.0922 | -32.0787 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,560,698 training samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.46 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 26.67 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.
Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.
[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]
One thing I often ask about is ancient Greek and how this relates.
Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.
[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]
See, the thing we're doing right now is we're forcing people to learn mathematics.
Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.
[-0.01942082867026329, 0.1043599545955658, 0.009455358609557152, -0.02814248949289322, -0.017036128789186478, ...]
- Loss:
main.ModifiedMatryoshkaLoss
with these parameters:{ "loss": "MSELoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Unnamed Dataset
- Size: 6,974 evaluation samples
- Columns:
english
,non_english
, andlabel
- Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.68 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 27.31 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english non_english label Thank you so much, Chris.
Muchas gracias Chris.
[-0.0616779662668705, -0.044504180550575256, -0.032505787909030914, -0.06641441583633423, 0.003981734160333872, ...]
And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.
Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.
[0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]
I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.
He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.
[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]
- Loss:
main.ModifiedMatryoshkaLoss
with these parameters:{ "loss": "MSELoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 200per_device_eval_batch_size
: 200learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truelabel_names
: ['label']
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 200per_device_eval_batch_size
: 200per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: ['label']load_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse |
---|---|---|---|---|---|---|
0.0562 | 1000 | 0.0283 | 0.0251 | -22.4432 | -22.0406 | -25.1401 |
0.1123 | 2000 | 0.0241 | 0.0227 | -24.1255 | -23.9880 | -24.7731 |
0.1685 | 3000 | 0.0224 | 0.0214 | -25.3630 | -25.2889 | -25.4316 |
0.2247 | 4000 | 0.0214 | 0.0205 | -27.9225 | -28.0038 | -27.3050 |
0.2808 | 5000 | 0.0206 | 0.0199 | -29.4189 | -29.5093 | -28.8545 |
0.3370 | 6000 | 0.0202 | 0.0194 | -30.3190 | -30.4212 | -29.4919 |
0.3932 | 7000 | 0.0198 | 0.0191 | -31.3278 | -31.4753 | -30.3090 |
0.4493 | 8000 | 0.0195 | 0.0188 | -31.4089 | -31.6387 | -30.3325 |
0.5055 | 9000 | 0.0193 | 0.0186 | -32.0598 | -32.2536 | -30.9067 |
0.5617 | 10000 | 0.0191 | 0.0184 | -32.0989 | -32.2766 | -31.0155 |
0.6178 | 11000 | 0.0189 | 0.0183 | -32.2449 | -32.4302 | -30.9863 |
0.6740 | 12000 | 0.0187 | 0.0181 | -32.5800 | -32.8070 | -31.2254 |
0.7302 | 13000 | 0.0186 | 0.0180 | -32.9225 | -33.1228 | -31.5803 |
0.7863 | 14000 | 0.0185 | 0.0179 | -32.9227 | -33.1304 | -31.5169 |
0.8425 | 15000 | 0.0184 | 0.0178 | -33.0181 | -33.2681 | -31.5791 |
0.8987 | 16000 | 0.0183 | 0.0177 | -33.1309 | -33.3638 | -31.6113 |
0.9548 | 17000 | 0.0182 | 0.0176 | -33.1635 | -33.4414 | -31.6507 |
1.0110 | 18000 | 0.0181 | 0.0175 | -33.3615 | -33.6376 | -31.8086 |
1.0672 | 19000 | 0.018 | 0.0175 | -33.5781 | -33.8775 | -32.0611 |
1.1233 | 20000 | 0.0179 | 0.0174 | -33.5645 | -33.8531 | -32.0438 |
1.1795 | 21000 | 0.0179 | 0.0173 | -33.6646 | -33.9817 | -32.0500 |
1.2357 | 22000 | 0.0179 | 0.0173 | -33.7056 | -34.0088 | -32.1065 |
1.2918 | 23000 | 0.0178 | 0.0173 | -33.7397 | -34.0153 | -32.1810 |
1.3480 | 24000 | 0.0178 | 0.0172 | -33.7863 | -34.0887 | -32.1103 |
1.4042 | 25000 | 0.0177 | 0.0172 | -33.7981 | -34.0863 | -32.1683 |
1.4603 | 26000 | 0.0177 | 0.0171 | -33.7458 | -34.0451 | -32.0611 |
1.5165 | 27000 | 0.0177 | 0.0171 | -33.7650 | -34.0652 | -32.1565 |
1.5727 | 28000 | 0.0176 | 0.0171 | -33.7347 | -34.0446 | -32.0698 |
1.6288 | 29000 | 0.0176 | 0.0171 | -33.8011 | -34.1169 | -32.0683 |
1.6850 | 30000 | 0.0176 | 0.0170 | -33.7949 | -34.1010 | -32.1128 |
1.7412 | 31000 | 0.0176 | 0.0170 | -33.7713 | -34.0857 | -32.1020 |
1.7973 | 32000 | 0.0176 | 0.0170 | -33.8393 | -34.1676 | -32.1371 |
1.8535 | 33000 | 0.0175 | 0.0170 | -33.7687 | -34.0887 | -32.0748 |
1.9097 | 34000 | 0.0175 | 0.0170 | -33.7614 | -34.0854 | -32.0550 |
1.9659 | 35000 | 0.0175 | 0.0170 | -33.7751 | -34.0922 | -32.0787 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for luanafelbarros/bert-en-es-pt-matryoshka_v3
Base model
google-bert/bert-base-multilingual-casedEvaluation results
- Negative Mse on MSE val en esself-reported-33.775
- Negative Mse on MSE val en ptself-reported-34.092
- Negative Mse on MSE val en pt brself-reported-32.079