initial-dq-model / README.md
lucafrost's picture
update model card README.md
e79a3b2
|
raw
history blame
1.59 kB
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: initial-dq-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# initial-dq-model
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1677
- Precision: 0.7763
- Recall: 0.9380
- F1: 0.8495
- Accuracy: 0.9423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2251 | 1.0 | 1220 | 0.1768 | 0.7481 | 0.9264 | 0.8277 | 0.9378 |
| 0.186 | 2.0 | 2440 | 0.1677 | 0.7763 | 0.9380 | 0.8495 | 0.9423 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.10.2+cu113
- Datasets 2.8.0
- Tokenizers 0.13.2