boto-7B-GGUF / README.md
lucianosb's picture
Update README.md
701347e verified
|
raw
history blame
6.88 kB
metadata
inference: false
language:
  - pt
model_creator: Luciano Santa Brígida
model_link: https://huggingface.co/lucianosb/boto-7B
model_name: Boto 7B
model_type: mistral
quantized_by: lucianosb
pipeline_tag: text-generation
license: apache-2.0

Boto 7B - GGUF

Boto-7B é um modelo de linguagem de 7 bilhões de parâmetros, otimizado a partir do Mistral-7B.

Confira os presets para usar com LM Studio.

Arquivos Incluídos

Nome Método Quant Bits Tamanho Desc
boto-7B-q2_k.gguf q2_K 2 2.72 GB Quantização em 2-bit. Significativa perda de qualidade. Não-recomendado.
boto-7B-q3_k_m.gguf q3_K_M 3 3.52 GB Quantização em 3-bit.
boto-7B-q3_k_s.gguf q3_K_S 3 3.16 GB Quantização em 3-bit.
boto-7B-q4_0.gguf q4_0 4 4.11 GB Quantização em 4-bit. Prefira usar o Q3_K_M
boto-7B-q4_k_s.gguf q4_K_S 4 4.14 GB Quantização em 4-bit.
boto-7B-q3_k_l.gguf q3_K_L 3 3.82 GB Quantização em 3-bit com menor perda de qualidade.
boto-7B-q4_k_m.gguf q4_K_M 4 4.37 GB Quantização em 4-bit.
boto-7B-q4_1.gguf q4_1 4 4.55 GB Quantização em 4-bit. Acurácia maior que q4_0 mas não tão boa quanto q5_0. Inferência mais rápida que os modelos q5.
boto-7B-q5_0.gguf q5_0 5 5 GB Quantização em 5-bit. Melhor acurácia, maior uso de recursos, inferência mais lenta.
boto-7B-q5_1.gguf q5_1 5 5.44 GB Quantização em 5-bit. Ainda Melhor acurácia, maior uso de recursos, inferência mais lenta.
boto-7B-q5_k_m.gguf q5_K_M 5 5.13 GB Quantização em 5-bit. Melhor performance. Recomendado.
boto-7B-q5_k_s.gguf q5_K_S 5 5 GB Quantização em 5-bit.
boto-7B-q6_k.gguf q6_K 6 5.94 GB Quantização em 6-bit.
boto-7B-q8_0.gguf q8_0 8 7.7 GB Quantização em 8-bit. Quase indistinguível do float16. Usa muitos recursos e é mais lento.

Observação: os valores de RAM acima não pressupõem descarregamento de GPU. Se as camadas forem descarregadas para a GPU, isso reduzirá o uso de RAM e usará VRAM.

Como executar com llama.cpp

Usei o seguinte comando. Para melhores resultados forneça exemplos de resultados esperados. Exemplo:

Conte a história do Curupira

./main -m ./models/boto-7B-GGUF/boto-7B-q5_k_m.gguf --color --temp 0.5 -n 256 -p "### Instruções: {comando} ### Resposta:"

Para compreender os parâmetros, veja a documentação do llama.cpp

Experimente no Google Colab: Open In Colab

Sobre o formato GGUF

GGUF é um novo formato introduzido pela equipe llama.cpp em 21 de agosto de 2023. É um substituto para o GGML, que não é mais suportado pelo llama.cpp.

O principal benefício do GGUF é que ele é um formato extensível e à prova de futuro que armazena mais informações sobre o modelo como metadados. Ele também inclui código de tokenização significativamente melhorado, incluindo pela primeira vez suporte total para tokens especiais. Isso deve melhorar o desempenho, especialmente com modelos que usam novos tokens especiais e implementam modelos de prompt personalizados.

Aqui está uma lista de clientes e bibliotecas que são conhecidos por suportar GGUF:

  • llama.cpp.
  • ollama - servidor com interfaces REST e CLI
  • Faraday.dev - App para Windows e Mac
  • lollms-webui - Lord of Large Language Models Web User Interface
  • text-generation-webui, a interface web mais amplamente utilizada. Suporta GGUF com aceleração GPU via backend ctransformers - backend llama-cpp-python deve funcionar em breve também.
  • KoboldCpp, agora suporta GGUF a partir da versão 1.41! Uma poderosa interface web GGML, com aceleração total da GPU. Especialmente bom para contar histórias.
  • LM Studio, versão 0.2.2 e posteriores suportam GGUF. Uma GUI local totalmente equipada com aceleração GPU em ambos Windows (NVidia e AMD) e macOS.
  • LoLLMS Web UI, agora deve funcionar, escolha o backend c_transformers. Uma ótima interface web com muitos recursos interessantes. Suporta aceleração GPU CUDA.
  • ctransformers, agora suporta GGUF a partir da versão 0.2.24! Uma biblioteca Python com aceleração GPU, suporte LangChain e servidor AI compatível com OpenAI.
  • llama-cpp-python, suporta GGUF a partir da versão 0.1.79. Uma biblioteca Python com aceleração GPU, suporte LangChain e servidor API compatível com OpenAI.
  • candle, adicionou suporte GGUF em 22 de agosto. Candle é um framework ML Rust com foco em desempenho, incluindo suporte GPU e facilidade de uso.
  • LocalAI, adicionou suporte GGUF em 23 de agosto. LocalAI provê uma API Rest para modelos LLM e de geração de imagens.
  • Jan, similar ao LM Studio, porém complemetamente open-source

Template

### Instrução:
{prompt}

### Resposta: