|
--- |
|
base_model: microsoft/Phi-3-mini-4k-instruct |
|
library_name: peft |
|
license: mit |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputdir |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# outputdir |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2794 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 3.0506 | 0.0771 | 100 | 2.8512 | |
|
| 2.4484 | 0.1542 | 200 | 1.7779 | |
|
| 1.5032 | 0.2313 | 300 | 1.3608 | |
|
| 1.3472 | 0.3085 | 400 | 1.3325 | |
|
| 1.3304 | 0.3856 | 500 | 1.3195 | |
|
| 1.3156 | 0.4627 | 600 | 1.3103 | |
|
| 1.313 | 0.5398 | 700 | 1.3038 | |
|
| 1.2976 | 0.6169 | 800 | 1.2991 | |
|
| 1.3001 | 0.6940 | 900 | 1.2956 | |
|
| 1.2976 | 0.7712 | 1000 | 1.2927 | |
|
| 1.2902 | 0.8483 | 1100 | 1.2907 | |
|
| 1.2831 | 0.9254 | 1200 | 1.2888 | |
|
| 1.2839 | 1.0025 | 1300 | 1.2874 | |
|
| 1.2792 | 1.0796 | 1400 | 1.2860 | |
|
| 1.295 | 1.1567 | 1500 | 1.2845 | |
|
| 1.287 | 1.2339 | 1600 | 1.2838 | |
|
| 1.2831 | 1.3110 | 1700 | 1.2831 | |
|
| 1.2764 | 1.3881 | 1800 | 1.2821 | |
|
| 1.2836 | 1.4652 | 1900 | 1.2815 | |
|
| 1.2844 | 1.5423 | 2000 | 1.2810 | |
|
| 1.2791 | 1.6194 | 2100 | 1.2804 | |
|
| 1.2869 | 1.6965 | 2200 | 1.2799 | |
|
| 1.2814 | 1.7737 | 2300 | 1.2798 | |
|
| 1.2775 | 1.8508 | 2400 | 1.2796 | |
|
| 1.2837 | 1.9279 | 2500 | 1.2794 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |