metadata
license: mit
base_model: neuraly/bert-base-italian-cased-sentiment
tags:
- generated_from_trainer
datasets:
- tweet_sentiment_multilingual
metrics:
- accuracy
model-index:
- name: sentiment_ita
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_sentiment_multilingual
type: tweet_sentiment_multilingual
config: italian
split: validation
args: italian
metrics:
- name: Accuracy
type: accuracy
value: 0.6851851851851852
sentiment_ita
This model is a fine-tuned version of neuraly/bert-base-italian-cased-sentiment on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:
- Loss: 2.5004
- Accuracy: 0.6852
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 14
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 171 | 0.8112 | 0.6481 |
0.9213 | 2.0 | 342 | 0.7370 | 0.6728 |
0.9213 | 3.0 | 513 | 0.8245 | 0.6944 |
0.3466 | 4.0 | 684 | 1.1194 | 0.6790 |
0.3466 | 5.0 | 855 | 1.6827 | 0.6667 |
0.1383 | 6.0 | 1026 | 2.0184 | 0.6883 |
0.1383 | 7.0 | 1197 | 2.0243 | 0.6975 |
0.0647 | 8.0 | 1368 | 2.2284 | 0.6790 |
0.0647 | 9.0 | 1539 | 2.3231 | 0.6914 |
0.0203 | 10.0 | 1710 | 2.3428 | 0.7068 |
0.0203 | 11.0 | 1881 | 2.5525 | 0.6852 |
0.0065 | 12.0 | 2052 | 2.4998 | 0.6821 |
0.0065 | 13.0 | 2223 | 2.4901 | 0.6790 |
0.0058 | 14.0 | 2394 | 2.5004 | 0.6852 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.15.0