luluw's picture
End of training
2f3f679 verified
metadata
library_name: transformers
language:
  - np
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Nepali-BERT-sentiment
    results: []

Nepali-BERT-sentiment

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the Custom Devangari Datasets dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6887
  • Accuracy: 0.8660
  • F1: 0.4658
  • Precision: 0.4343
  • Recall: 0.5021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5999 1.0 595 0.5313 0.7274 0.3965 0.2670 0.7700
0.5114 2.0 1190 0.4717 0.7745 0.4427 0.3106 0.7700
0.4005 3.0 1785 0.4986 0.7907 0.4556 0.3266 0.7532
0.3087 4.0 2380 0.6887 0.8660 0.4658 0.4343 0.5021
0.2292 5.0 2975 0.8148 0.8626 0.4615 0.4240 0.5063

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1