|
--- |
|
language: |
|
- en |
|
license: llama3.2 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- llama |
|
- trl |
|
- sft |
|
- reasoning |
|
- llama-3 |
|
base_model: meta-llama/Llama-3.2-3B-Instruct |
|
datasets: |
|
- KingNish/reasoning-base-20k |
|
model-index: |
|
- name: thea-c-3b-25r |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 74.02 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-c-3b-25r |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 22.77 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-c-3b-25r |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 13.37 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-c-3b-25r |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 2.01 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-c-3b-25r |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 1.27 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-c-3b-25r |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 24.2 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-c-3b-25r |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Model Description |
|
|
|
A work in progress reasoning Llama 3.2 3B model trained on reasoning data. |
|
|
|
Since I used different training code, it is unknown whether it generates the same kind of reasoning. |
|
Here is what inference code you should use: |
|
```py |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
MAX_REASONING_TOKENS = 1024 |
|
MAX_RESPONSE_TOKENS = 512 |
|
|
|
model_name = "piotr25691/thea-3b-25r" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Which is greater 9.9 or 9.11 ??" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
# Generate reasoning |
|
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) |
|
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) |
|
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) |
|
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# print("REASONING: " + reasoning_output) |
|
|
|
# Generate answer |
|
messages.append({"role": "reasoning", "content": reasoning_output}) |
|
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) |
|
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) |
|
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
print("ANSWER: " + response_output) |
|
``` |
|
|
|
- **Trained by:** [Piotr Zalewski](https://huggingface.co/piotr25691) |
|
- **License:** llama3.2 |
|
- **Finetuned from model:** [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) |
|
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k) |
|
|
|
This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4). |
|
|
|
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs. |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_piotr25691__thea-c-3b-25r) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |22.94| |
|
|IFEval (0-Shot) |74.02| |
|
|BBH (3-Shot) |22.77| |
|
|MATH Lvl 5 (4-Shot)|13.37| |
|
|GPQA (0-shot) | 2.01| |
|
|MuSR (0-shot) | 1.27| |
|
|MMLU-PRO (5-shot) |24.20| |
|
|
|
|