File size: 14,272 Bytes
819cc5b
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc40d39daf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc40d39db80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc40d39dc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc40d39dca0>", "_build": "<function ActorCriticPolicy._build at 0x7fc40d39dd30>", "forward": "<function ActorCriticPolicy.forward at 0x7fc40d39ddc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc40d39de50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc40d39dee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc40d39df70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc40d3a0040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc40d3a00d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc40d3a0160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc40d395ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675532130562115522, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAANdOj5KloG+ZdfmPrlkHL7+1g2/2QpXP4NVDD+orUG/u/cpP+rAj7wXpyC/HsyJv4s0V75mL2M/Dez2vWxqMT89b48/FivMP0JqFz9hVDW+SaQrvyJTtT3r/4s+ps6wPlzDfb+2eP0+YbjRvyKlgj/Oui0/Td63P5FVlb2N3sM/os9CQIuoTj48700/8Okav6UHCT/rcbC/l+eOvx2vej9YiNo/ANqavSeCSj7gAyBAeGSoPzgmfb5hr3M+TwiWvlLp0T6GGlnA8405P94tn75cw32/tnj9PmG40b8ipYI/6M5PPYhdoD+wjsc952qbP0/qkD8HWrq/ZVlbvv3LVL9zrbw91UyIv2JCoT6Zebg/HvZQP3rdj76swmE/c6WPu3vqXD9iRpu/fG9pPjuxXL+yC/++9G5KP6KbzT40ENK/XMN9v7Z4/T5huNG/J9F6vygexT4/dRE/AP3uPvOuMD9pAaG/jvRrPzo48D0C5om/V/pQPxvUNbxqzZE/G/NBvxrc6r4gn9c+kpu3PcOoOj5+Iu++OmyUPmVENz99U4u/tdJjPT/3XD9mIfq+tLDoP9gggT+2eP0+Cj8cPyfRer+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABetxa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfswQPgAAAAAvSADAAAAAAN+/lDoAAAAAhs3gPwAAAAAaZ4U9AAAAAGKk3D8AAAAAFWA6vQAAAABVN+K/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAysX2NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNG0ir0AAAAAAZPzvwAAAACEyHW7AAAAANHt/z8AAAAANtD2PQAAAABFWu8/AAAAAAyZEL4AAAAAYl7jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABC687UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBI17q9AAAAAAec8L8AAAAAJGMNvgAAAACeodw/AAAAACSkkLwAAAAAdJbjPwAAAAAajsM8AAAAANvP6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/8M62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAo3UNPgAAAADx3OG/AAAAACP5A74AAAAArZP5PwAAAABsh5q9AAAAAA4WAEAAAAAAE+aLvQAAAAAoR++/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8xmVZ9uxeMAWyUTegDjAF0lEdAq9PB77bcoHV9lChoBkdAn4Cl/+bVjWgHTegDaAhHQKvXMnTiKix1fZQoaAZHQJ++sdBBzFNoB03oA2gIR0Cr3X/wI+nqdX2UKGgGR0CgJ954wAU+aAdN6ANoCEdAq+HXfGdZq3V9lChoBkdAnDFMzVMEimgHTegDaAhHQKvi6bjtG/h1fZQoaAZHQKD3810knkVoB03oA2gIR0Cr5S8PnSv1dX2UKGgGR0CeMp4agmJFaAdN6ANoCEdAq+ojc2zfJnV9lChoBkdAl56pi3G4qmgHTegDaAhHQKvuY7GNrCZ1fZQoaAZHQJj3GPq9oOBoB03oA2gIR0Cr75rq2SdOdX2UKGgGR0CgTLeiBXjmaAdN6ANoCEdAq/LQ4wRGt3V9lChoBkdAnWUMgU1yemgHTegDaAhHQKv6KsoUi6h1fZQoaAZHQJ3Y6ZG8VYZoB03oA2gIR0Cr/mXDej20dX2UKGgGR0Ce3sRJmNBGaAdN6ANoCEdAq/9n3L3bmHV9lChoBkdAnsp7FjurqGgHTegDaAhHQKwBs23rleZ1fZQoaAZHQJ1+4R+SbH9oB03oA2gIR0CsBqJxvNu+dX2UKGgGR0Cbm08wpON6aAdN6ANoCEdArAsLVlPJrHV9lChoBkdAocR07GNrCWgHTegDaAhHQKwMGcNpdrx1fZQoaAZHQJ9KYbVBlc1oB03oA2gIR0CsDpQ6ySmqdX2UKGgGR0Cewygg5imVaAdN6ANoCEdArBXavzOHFnV9lChoBkdAmWRslPacqmgHTegDaAhHQKwbAcdYGMZ1fZQoaAZHQJBTuafBeoloB03oA2gIR0CsHAjWkJrtdX2UKGgGR0CYj1CE6DGtaAdN6ANoCEdArB5S/qPfbnV9lChoBkdAmg8QIppeu2gHTegDaAhHQKwjUtFKCg91fZQoaAZHQImtzcTJyQxoB03oA2gIR0CsJ68+iaiLdX2UKGgGR0CYZNgQHzH0aAdN6ANoCEdArCi9/SYw7HV9lChoBkdAliopTyauwGgHTegDaAhHQKwrBkFOful1fZQoaAZHQKBL4FuejEhoB03oA2gIR0CsMbDuKGcndX2UKGgGR0CbNefcer+6aAdN6ANoCEdArDgHPszEaXV9lChoBkdAnhw51RtP6GgHTegDaAhHQKw5GeIVM251fZQoaAZHQJKdsI2OyVxoB03oA2gIR0CsO2Fj/dZadX2UKGgGR0CcusT/hl19aAdN6ANoCEdArEBLwWnCO3V9lChoBkdAngEJMYdhiWgHTegDaAhHQKxEt4N7SiN1fZQoaAZHQJonRmOEM9doB03oA2gIR0CsRckIX0oSdX2UKGgGR0B28DPGACnxaAdN6ANoCEdArEgE4BFNL3V9lChoBkdAnwfcO09hZ2gHTegDaAhHQKxNn1jAi3Z1fZQoaAZHQKBQ4+h4+r5oB03oA2gIR0CsU/q3/givdX2UKGgGR0Caxzp5NXYEaAdN6ANoCEdArFWVEsrd33V9lChoBkdAnB4iGvfTC2gHTegDaAhHQKxYDsC1Z1V1fZQoaAZHQJw+MnhKlHloB03oA2gIR0CsXNkhzNlidX2UKGgGR0CWBDwIMSbpaAdN6ANoCEdArGECUkfLcXV9lChoBkdAl44KK+BYm2gHTegDaAhHQKxiAubqhUR1fZQoaAZHQJ3Q9chTwUhoB03oA2gIR0CsZE2pAD7qdX2UKGgGR0CeOYdZJTVEaAdN6ANoCEdArGkqgK4QSXV9lChoBkdAlr91wPy08mgHTegDaAhHQKxu2xSpBHF1fZQoaAZHQJychrYXfqJoB03oA2gIR0CscG5o4+8odX2UKGgGR0CNrUksz2vjaAdN6ANoCEdArHPo6nzg/HV9lChoBkdAm1TTi83+/GgHTegDaAhHQKx5AMc6vJR1fZQoaAZHQJCET5GjKxNoB03oA2gIR0CsfS4pc5bRdX2UKGgGR0CQ1GLlV94NaAdN6ANoCEdArH47PY4ACHV9lChoBkdAl9kpaV2RrGgHTegDaAhHQKyAjJ17pmp1fZQoaAZHQJIHS2jO9nNoB03oA2gIR0Csh428Zk08dX2UKGgGR0CYOlLmITGpaAdN6ANoCEdArI7QYrJ8v3V9lChoBkdAk5wShFmWdGgHTegDaAhHQKyQaHzpX6t1fZQoaAZHQJcIzxI8QqZoB03oA2gIR0Csk91mrbQDdX2UKGgGR0CauWRLbpNcaAdN6ANoCEdArJlJNEgGKXV9lChoBkdAk7jYH9m6G2gHTegDaAhHQKydff8/D+B1fZQoaAZHQJcYouYhMaloB03oA2gIR0CsnoQosqaxdX2UKGgGR0CX2Job4rSWaAdN6ANoCEdArKC0yDZlF3V9lChoBkdAkhJ0voNd7mgHTegDaAhHQKylnTdcjaB1fZQoaAZHQJkvNyU9pypoB03oA2gIR0CsqhktVaOhdX2UKGgGR0Ca8DcI7eVLaAdN6ANoCEdArKuKH9FWn3V9lChoBkdAmJCogJTl1mgHTegDaAhHQKyuy5IYm9h1fZQoaAZHQJbjB0nw5NpoB03oA2gIR0CstY8SXdCWdX2UKGgGR0CXu05nDiwTaAdN6ANoCEdArLnFuWKMvXV9lChoBkdAluTv0Zm7KGgHTegDaAhHQKy61sqJ/G51fZQoaAZHQJk5ZaB7NStoB03oA2gIR0CsvR0xVQyidX2UKGgGR0B6wlsfq5byaAdNNAFoCEdArMDqB3A2ynV9lChoBkdAnuyU6o2n9GgHTegDaAhHQKzB/ix3V091fZQoaAZHQJQMFCw8nu1oB03oA2gIR0Csxj39BKL9dX2UKGgGR0Ccd/OTaCcxaAdN6ANoCEdArMdHRb8m8nV9lChoBkdAnLWaLCN0eWgHTegDaAhHQKzP5DQZ4wB1fZQoaAZHQJp9QcdYGMZoB03oA2gIR0Cs0ZUXP7emdX2UKGgGR0CdOzkdV/+baAdN6ANoCEdArNYNK7I1cnV9lChoBkdAnKJufAbhnGgHTegDaAhHQKzXFaRp1zR1fZQoaAZHQJuWOsNlRP5oB03oA2gIR0Cs3SKzzErHdX2UKGgGR0Ce5zM0gr6MaAdN6ANoCEdArN4qMo+fRXV9lChoBkdAmfqLAYYR/WgHTegDaAhHQKziOsmv4dp1fZQoaAZHQJ9aOR7qptJoB03oA2gIR0Cs405sCT2WdX2UKGgGR0CR7TFVDKHPaAdN6ANoCEdArOprXL/0d3V9lChoBkdAmW2xu89Oh2gHTegDaAhHQKzsCNwR5C51fZQoaAZHQJwWx3s5XEJoB03oA2gIR0Cs8hPrWy1NdX2UKGgGR0Cg4/ZpJwsHaAdN6ANoCEdArPMU3XI2fnV9lChoBkdAmoNHJgb6xmgHTegDaAhHQKz5RWp6yB11fZQoaAZHQJFQoxgy/K1oB03oA2gIR0Cs+lmwzLwGdX2UKGgGR0CfPWOafBepaAdN6ANoCEdArP6CiwjdHnV9lChoBkdAnP8LPY4ACGgHTegDaAhHQKz/huNPxhF1fZQoaAZHQJgNnU+cH4ZoB03oA2gIR0CtBaLFn7HidX2UKGgGR0CcwCdBSk0raAdN6ANoCEdArQc9f/m1Y3V9lChoBkdAmlkZn+Q2dmgHTegDaAhHQK0NY75Ec811fZQoaAZHQJPat8CxNZhoB03oA2gIR0CtDu9n9NvgdX2UKGgGR0CfbUdNFjNIaAdN6ANoCEdArRUqL/CIlHV9lChoBkdAnqo7wKBuoGgHTegDaAhHQK0WNOu7pV11fZQoaAZHQJ49xuEVWS5oB03oA2gIR0CtGkLwe/5+dX2UKGgGR0CdpaJHiFTOaAdN6ANoCEdArRtKXQdCFHV9lChoBkdAlI1YYrJ8v2gHTegDaAhHQK0hUDlo11p1fZQoaAZHQJrzfGOuJUJoB03oA2gIR0CtIlsOf/WEdX2UKGgGR0CdPC8hLXcyaAdN6ANoCEdArSe3qgRK6HV9lChoBkdAjMaAxrSE12gHTegDaAhHQK0pTwEyLyd1fZQoaAZHQJpAxZlnRLNoB03oA2gIR0CtMTI3aSLZdX2UKGgGR0CZUJycTakAaAdN6ANoCEdArTJGnhsImnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}