bert-german-ner
This model is a fine-tuned version of dbmdz/bert-base-german-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3196
- Precision: 0.8334
- Recall: 0.8620
- F1: 0.8474
- Accuracy: 0.9292
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 300 | 0.3617 | 0.7310 | 0.7733 | 0.7516 | 0.8908 |
0.5428 | 2.0 | 600 | 0.2897 | 0.7789 | 0.8395 | 0.8081 | 0.9132 |
0.5428 | 3.0 | 900 | 0.2805 | 0.8147 | 0.8465 | 0.8303 | 0.9221 |
0.2019 | 4.0 | 1200 | 0.2816 | 0.8259 | 0.8498 | 0.8377 | 0.9260 |
0.1215 | 5.0 | 1500 | 0.2942 | 0.8332 | 0.8599 | 0.8463 | 0.9285 |
0.1215 | 6.0 | 1800 | 0.3053 | 0.8293 | 0.8619 | 0.8452 | 0.9287 |
0.0814 | 7.0 | 2100 | 0.3190 | 0.8249 | 0.8634 | 0.8437 | 0.9267 |
0.0814 | 8.0 | 2400 | 0.3196 | 0.8334 | 0.8620 | 0.8474 | 0.9292 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 25
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for lunesco/bert-german-ner
Base model
dbmdz/bert-base-german-casedDataset used to train lunesco/bert-german-ner
Evaluation results
- Precision on conll2003validation set self-reported0.833
- Recall on conll2003validation set self-reported0.862
- F1 on conll2003validation set self-reported0.847
- Accuracy on conll2003validation set self-reported0.929