SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'search_query: dab rig',
'search_query: volcano weed vaporizer',
'search_query: 22 gold chain for men',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-esci
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7405 |
dot_accuracy | 0.269 |
manhattan_accuracy | 0.7432 |
euclidean_accuracy | 0.7457 |
max_accuracy | 0.7457 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 167,039 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 11.1 tokens
- max: 38 tokens
- min: 14 tokens
- mean: 43.23 tokens
- max: 124 tokens
- min: 16 tokens
- mean: 43.16 tokens
- max: 97 tokens
- Samples:
anchor positive negative search_query: foos ball coffee table
search_document: KICK Vanquish 55" in Foosball Table, KICK, Blue/Gray
search_document: KICK Legend 55" Foosball Table (Black), KICK, Black
search_query: bathroom rugs white washable
search_document: Luxury Bath Mat Floor Towel Set - Absorbent Cotton Hotel Spa Shower/Bathtub Mats [Not a Bathroom Rug] 22"x34"
White search_query: kids gloves
search_document: EvridWear Boys Girls Magic Stretch Gripper Gloves 3 Pair Pack Assortment, Kids One Size Winter Warm Gloves Children (8-14Years, 3 Pairs Camo), Evridwear, 3 Pairs Camo
search_document: Body Glove Little Boys 2-Piece UPF 50+ Rash Guard Swimsuit Set (2 Piece), All Black, Size 5, Body Glove, All Black
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 11.44 tokens
- max: 31 tokens
- min: 16 tokens
- mean: 42.26 tokens
- max: 92 tokens
- min: 16 tokens
- mean: 42.28 tokens
- max: 105 tokens
- Samples:
anchor positive negative search_query: defender series iphone 8
search_document: Hand-e Muscle Series Belt Clip Case for Apple iPhone 7 / iPhone 8 / iPhone SE “2020” (4.7”) 2-in-1 Protective Defender w Screen Protector & Holster & Kickstand/Shock & Drop Proof – Camouflage/Orange, Hand-e, Camouflage / Orange
search_document: OtterBox Defender Series Rugged Case for iPhone 8 PLUS & iPhone 7 PLUS - Case Only - Non-Retail Packaging - Dark Lake - With Microbial Defense, OtterBox, Dark Lake
search_query: joy mangano
search_document: Joy by Joy Mangano 11-Piece Complete Luxury Towel Set, Ivory, Joy Mangano, Ivory
search_document: BAGSMART Jewelry Organizer Case Travel Jewelry Storage Bag for Necklace, Earrings, Rings, Bracelet, Soft Pink, BAGSMART, Soft Pink
search_query: cashel fly masks for horses without ears
search_document: Cashel Crusader Designer Horse Fly Mask, Leopard, Weanling, Cashel, Leopard
search_document: Cashel Crusader Designer Horse Fly Mask with Ears, Teal Tribal, Weanling, Cashel, Teal Tribal
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 4learning_rate
: 1e-06num_train_epochs
: 5lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: 2load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: 2past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | triplet-esci_cosine_accuracy |
---|---|---|---|---|
0.0096 | 100 | 0.6669 | - | - |
0.0192 | 200 | 0.6633 | - | - |
0.0287 | 300 | 0.6575 | - | - |
0.0383 | 400 | 0.6638 | - | - |
0.0479 | 500 | 0.6191 | - | - |
0.0575 | 600 | 0.6464 | - | - |
0.0671 | 700 | 0.6291 | - | - |
0.0766 | 800 | 0.5973 | - | - |
0.0862 | 900 | 0.605 | - | - |
0.0958 | 1000 | 0.6278 | 0.6525 | 0.7269 |
0.1054 | 1100 | 0.6041 | - | - |
0.1149 | 1200 | 0.6077 | - | - |
0.1245 | 1300 | 0.589 | - | - |
0.1341 | 1400 | 0.5811 | - | - |
0.1437 | 1500 | 0.5512 | - | - |
0.1533 | 1600 | 0.5907 | - | - |
0.1628 | 1700 | 0.5718 | - | - |
0.1724 | 1800 | 0.5446 | - | - |
0.1820 | 1900 | 0.546 | - | - |
0.1916 | 2000 | 0.5141 | 0.6105 | 0.7386 |
0.2012 | 2100 | 0.5359 | - | - |
0.2107 | 2200 | 0.5093 | - | - |
0.2203 | 2300 | 0.5384 | - | - |
0.2299 | 2400 | 0.5582 | - | - |
0.2395 | 2500 | 0.5038 | - | - |
0.2490 | 2600 | 0.5031 | - | - |
0.2586 | 2700 | 0.5393 | - | - |
0.2682 | 2800 | 0.4979 | - | - |
0.2778 | 2900 | 0.5221 | - | - |
0.2874 | 3000 | 0.4956 | 0.5852 | 0.7495 |
0.2969 | 3100 | 0.506 | - | - |
0.3065 | 3200 | 0.4962 | - | - |
0.3161 | 3300 | 0.4713 | - | - |
0.3257 | 3400 | 0.5016 | - | - |
0.3353 | 3500 | 0.4749 | - | - |
0.3448 | 3600 | 0.4732 | - | - |
0.3544 | 3700 | 0.4789 | - | - |
0.3640 | 3800 | 0.4825 | - | - |
0.3736 | 3900 | 0.4803 | - | - |
0.3832 | 4000 | 0.4471 | 0.5743 | 0.7546 |
0.3927 | 4100 | 0.4593 | - | - |
0.4023 | 4200 | 0.4481 | - | - |
0.4119 | 4300 | 0.4603 | - | - |
0.4215 | 4400 | 0.4569 | - | - |
0.4310 | 4500 | 0.4807 | - | - |
0.4406 | 4600 | 0.4368 | - | - |
0.4502 | 4700 | 0.4532 | - | - |
0.4598 | 4800 | 0.4432 | - | - |
0.4694 | 4900 | 0.4802 | - | - |
0.4789 | 5000 | 0.4643 | 0.5663 | 0.7593 |
0.4885 | 5100 | 0.4154 | - | - |
0.4981 | 5200 | 0.4441 | - | - |
0.5077 | 5300 | 0.4156 | - | - |
0.5173 | 5400 | 0.4273 | - | - |
0.5268 | 5500 | 0.3988 | - | - |
0.5364 | 5600 | 0.3942 | - | - |
0.5460 | 5700 | 0.4186 | - | - |
0.5556 | 5800 | 0.423 | - | - |
0.5651 | 5900 | 0.434 | - | - |
0.5747 | 6000 | 0.4136 | 0.5704 | 0.7616 |
0.5843 | 6100 | 0.3968 | - | - |
0.5939 | 6200 | 0.4045 | - | - |
0.6035 | 6300 | 0.4122 | - | - |
0.6130 | 6400 | 0.3618 | - | - |
0.6226 | 6500 | 0.341 | - | - |
0.6322 | 6600 | 0.3689 | - | - |
0.6418 | 6700 | 0.3621 | - | - |
0.6514 | 6800 | 0.3774 | - | - |
0.6609 | 6900 | 0.3519 | - | - |
0.6705 | 7000 | 0.3974 | 0.5729 | 0.7644 |
0.6801 | 7100 | 0.3443 | - | - |
0.6897 | 7200 | 0.3665 | - | - |
0.6993 | 7300 | 0.3683 | - | - |
0.7088 | 7400 | 0.3593 | - | - |
0.7184 | 7500 | 0.3419 | - | - |
0.7280 | 7600 | 0.3587 | - | - |
0.7376 | 7700 | 0.3463 | - | - |
0.7471 | 7800 | 0.3417 | - | - |
0.7567 | 7900 | 0.32 | - | - |
0.7663 | 8000 | 0.32 | 0.5735 | 0.7677 |
0.7759 | 8100 | 0.3296 | - | - |
0.7855 | 8200 | 0.3492 | - | - |
0.7950 | 8300 | 0.3022 | - | - |
0.8046 | 8400 | 0.3159 | - | - |
0.8142 | 8500 | 0.3172 | - | - |
0.8238 | 8600 | 0.3157 | - | - |
0.8334 | 8700 | 0.3271 | - | - |
0.8429 | 8800 | 0.337 | - | - |
0.8525 | 8900 | 0.322 | - | - |
0.8621 | 9000 | 0.3187 | 0.5803 | 0.7652 |
0.8717 | 9100 | 0.307 | - | - |
0.8812 | 9200 | 0.2984 | - | - |
0.8908 | 9300 | 0.2727 | - | - |
0.9004 | 9400 | 0.304 | - | - |
0.9100 | 9500 | 0.321 | - | - |
0.9196 | 9600 | 0.304 | - | - |
0.9291 | 9700 | 0.3302 | - | - |
0.9387 | 9800 | 0.3302 | - | - |
0.9483 | 9900 | 0.3134 | - | - |
0.9579 | 10000 | 0.2936 | 0.5858 | 0.7671 |
0.9675 | 10100 | 0.2953 | - | - |
0.9770 | 10200 | 0.3035 | - | - |
0.9866 | 10300 | 0.303 | - | - |
0.9962 | 10400 | 0.2606 | - | - |
1.0058 | 10500 | 0.2615 | - | - |
1.0153 | 10600 | 0.2703 | - | - |
1.0249 | 10700 | 0.2761 | - | - |
1.0345 | 10800 | 0.2559 | - | - |
1.0441 | 10900 | 0.2672 | - | - |
1.0537 | 11000 | 0.2656 | 0.5933 | 0.7676 |
1.0632 | 11100 | 0.2825 | - | - |
1.0728 | 11200 | 0.2484 | - | - |
1.0824 | 11300 | 0.2472 | - | - |
1.0920 | 11400 | 0.2678 | - | - |
1.1016 | 11500 | 0.2443 | - | - |
1.1111 | 11600 | 0.2685 | - | - |
1.1207 | 11700 | 0.2504 | - | - |
1.1303 | 11800 | 0.2431 | - | - |
1.1399 | 11900 | 0.2248 | - | - |
1.1495 | 12000 | 0.2229 | 0.5958 | 0.7688 |
1.1590 | 12100 | 0.228 | - | - |
1.1686 | 12200 | 0.2304 | - | - |
1.1782 | 12300 | 0.2193 | - | - |
1.1878 | 12400 | 0.2238 | - | - |
1.1973 | 12500 | 0.1957 | - | - |
1.2069 | 12600 | 0.2075 | - | - |
1.2165 | 12700 | 0.2014 | - | - |
1.2261 | 12800 | 0.2222 | - | - |
1.2357 | 12900 | 0.2059 | - | - |
1.2452 | 13000 | 0.2051 | 0.6077 | 0.7651 |
1.2548 | 13100 | 0.2076 | - | - |
1.2644 | 13200 | 0.226 | - | - |
1.2740 | 13300 | 0.1941 | - | - |
1.2836 | 13400 | 0.2053 | - | - |
1.2931 | 13500 | 0.2003 | - | - |
1.3027 | 13600 | 0.1947 | - | - |
1.3123 | 13700 | 0.1914 | - | - |
1.3219 | 13800 | 0.1956 | - | - |
1.3314 | 13900 | 0.1862 | - | - |
1.3410 | 14000 | 0.1873 | 0.6110 | 0.7646 |
1.3506 | 14100 | 0.1812 | - | - |
1.3602 | 14200 | 0.1828 | - | - |
1.3698 | 14300 | 0.1696 | - | - |
1.3793 | 14400 | 0.1705 | - | - |
1.3889 | 14500 | 0.1746 | - | - |
1.3985 | 14600 | 0.1756 | - | - |
1.4081 | 14700 | 0.1682 | - | - |
1.4177 | 14800 | 0.1769 | - | - |
1.4272 | 14900 | 0.1795 | - | - |
1.4368 | 15000 | 0.1736 | 0.6278 | 0.7616 |
1.4464 | 15100 | 0.1546 | - | - |
1.4560 | 15200 | 0.1643 | - | - |
1.4656 | 15300 | 0.1903 | - | - |
1.4751 | 15400 | 0.1902 | - | - |
1.4847 | 15500 | 0.1531 | - | - |
1.4943 | 15600 | 0.1711 | - | - |
1.5039 | 15700 | 0.1546 | - | - |
1.5134 | 15800 | 0.1503 | - | - |
1.5230 | 15900 | 0.1429 | - | - |
1.5326 | 16000 | 0.147 | 0.6306 | 0.7623 |
1.5422 | 16100 | 0.1507 | - | - |
1.5518 | 16200 | 0.152 | - | - |
1.5613 | 16300 | 0.1602 | - | - |
1.5709 | 16400 | 0.1541 | - | - |
1.5805 | 16500 | 0.1491 | - | - |
1.5901 | 16600 | 0.1378 | - | - |
1.5997 | 16700 | 0.1505 | - | - |
1.6092 | 16800 | 0.1334 | - | - |
1.6188 | 16900 | 0.1288 | - | - |
1.6284 | 17000 | 0.1168 | 0.6372 | 0.7629 |
1.6380 | 17100 | 0.135 | - | - |
1.6475 | 17200 | 0.1239 | - | - |
1.6571 | 17300 | 0.1398 | - | - |
1.6667 | 17400 | 0.1292 | - | - |
1.6763 | 17500 | 0.1414 | - | - |
1.6859 | 17600 | 0.116 | - | - |
1.6954 | 17700 | 0.1302 | - | - |
1.7050 | 17800 | 0.1194 | - | - |
1.7146 | 17900 | 0.1394 | - | - |
1.7242 | 18000 | 0.1316 | 0.6561 | 0.7592 |
1.7338 | 18100 | 0.1246 | - | - |
1.7433 | 18200 | 0.1277 | - | - |
1.7529 | 18300 | 0.1055 | - | - |
1.7625 | 18400 | 0.1211 | - | - |
1.7721 | 18500 | 0.1107 | - | - |
1.7817 | 18600 | 0.1145 | - | - |
1.7912 | 18700 | 0.1162 | - | - |
1.8008 | 18800 | 0.1114 | - | - |
1.8104 | 18900 | 0.1182 | - | - |
1.8200 | 19000 | 0.1152 | 0.6567 | 0.7591 |
1.8295 | 19100 | 0.1212 | - | - |
1.8391 | 19200 | 0.1253 | - | - |
1.8487 | 19300 | 0.115 | - | - |
1.8583 | 19400 | 0.1292 | - | - |
1.8679 | 19500 | 0.1151 | - | - |
1.8774 | 19600 | 0.1005 | - | - |
1.8870 | 19700 | 0.1079 | - | - |
1.8966 | 19800 | 0.0954 | - | - |
1.9062 | 19900 | 0.1045 | - | - |
1.9158 | 20000 | 0.1086 | 0.6727 | 0.7554 |
1.9253 | 20100 | 0.1174 | - | - |
1.9349 | 20200 | 0.1108 | - | - |
1.9445 | 20300 | 0.0992 | - | - |
1.9541 | 20400 | 0.1168 | - | - |
1.9636 | 20500 | 0.1028 | - | - |
1.9732 | 20600 | 0.1126 | - | - |
1.9828 | 20700 | 0.1113 | - | - |
1.9924 | 20800 | 0.1065 | - | - |
2.0020 | 20900 | 0.078 | - | - |
2.0115 | 21000 | 0.0921 | 0.6727 | 0.7568 |
2.0211 | 21100 | 0.0866 | - | - |
2.0307 | 21200 | 0.0918 | - | - |
2.0403 | 21300 | 0.0893 | - | - |
2.0499 | 21400 | 0.0882 | - | - |
2.0594 | 21500 | 0.0986 | - | - |
2.0690 | 21600 | 0.0923 | - | - |
2.0786 | 21700 | 0.0805 | - | - |
2.0882 | 21800 | 0.0887 | - | - |
2.0978 | 21900 | 0.1 | - | - |
2.1073 | 22000 | 0.0957 | 0.6854 | 0.7539 |
2.1169 | 22100 | 0.0921 | - | - |
2.1265 | 22200 | 0.0892 | - | - |
2.1361 | 22300 | 0.0805 | - | - |
2.1456 | 22400 | 0.0767 | - | - |
2.1552 | 22500 | 0.0715 | - | - |
2.1648 | 22600 | 0.083 | - | - |
2.1744 | 22700 | 0.0755 | - | - |
2.1840 | 22800 | 0.075 | - | - |
2.1935 | 22900 | 0.0724 | - | - |
2.2031 | 23000 | 0.0822 | 0.6913 | 0.7534 |
2.2127 | 23100 | 0.0623 | - | - |
2.2223 | 23200 | 0.0765 | - | - |
2.2319 | 23300 | 0.0755 | - | - |
2.2414 | 23400 | 0.0786 | - | - |
2.2510 | 23500 | 0.0651 | - | - |
2.2606 | 23600 | 0.081 | - | - |
2.2702 | 23700 | 0.0664 | - | - |
2.2797 | 23800 | 0.0906 | - | - |
2.2893 | 23900 | 0.0714 | - | - |
2.2989 | 24000 | 0.0703 | 0.6971 | 0.7536 |
2.3085 | 24100 | 0.0672 | - | - |
2.3181 | 24200 | 0.0754 | - | - |
2.3276 | 24300 | 0.0687 | - | - |
2.3372 | 24400 | 0.0668 | - | - |
2.3468 | 24500 | 0.0616 | - | - |
2.3564 | 24600 | 0.0693 | - | - |
2.3660 | 24700 | 0.0587 | - | - |
2.3755 | 24800 | 0.0612 | - | - |
2.3851 | 24900 | 0.0559 | - | - |
2.3947 | 25000 | 0.0676 | 0.7128 | 0.7497 |
2.4043 | 25100 | 0.0607 | - | - |
2.4139 | 25200 | 0.0727 | - | - |
2.4234 | 25300 | 0.0573 | - | - |
2.4330 | 25400 | 0.0717 | - | - |
2.4426 | 25500 | 0.0493 | - | - |
2.4522 | 25600 | 0.0558 | - | - |
2.4617 | 25700 | 0.0676 | - | - |
2.4713 | 25800 | 0.0757 | - | - |
2.4809 | 25900 | 0.0735 | - | - |
2.4905 | 26000 | 0.056 | 0.7044 | 0.7513 |
2.5001 | 26100 | 0.0687 | - | - |
2.5096 | 26200 | 0.0592 | - | - |
2.5192 | 26300 | 0.057 | - | - |
2.5288 | 26400 | 0.0444 | - | - |
2.5384 | 26500 | 0.0547 | - | - |
2.5480 | 26600 | 0.0605 | - | - |
2.5575 | 26700 | 0.066 | - | - |
2.5671 | 26800 | 0.0631 | - | - |
2.5767 | 26900 | 0.0634 | - | - |
2.5863 | 27000 | 0.0537 | 0.7127 | 0.7512 |
2.5958 | 27100 | 0.0535 | - | - |
2.6054 | 27200 | 0.0572 | - | - |
2.6150 | 27300 | 0.0473 | - | - |
2.6246 | 27400 | 0.0418 | - | - |
2.6342 | 27500 | 0.0585 | - | - |
2.6437 | 27600 | 0.0475 | - | - |
2.6533 | 27700 | 0.0549 | - | - |
2.6629 | 27800 | 0.0452 | - | - |
2.6725 | 27900 | 0.0514 | - | - |
2.6821 | 28000 | 0.0449 | 0.7337 | 0.7482 |
2.6916 | 28100 | 0.0544 | - | - |
2.7012 | 28200 | 0.041 | - | - |
2.7108 | 28300 | 0.0599 | - | - |
2.7204 | 28400 | 0.057 | - | - |
2.7300 | 28500 | 0.0503 | - | - |
2.7395 | 28600 | 0.0487 | - | - |
2.7491 | 28700 | 0.0503 | - | - |
2.7587 | 28800 | 0.0446 | - | - |
2.7683 | 28900 | 0.042 | - | - |
2.7778 | 29000 | 0.0501 | 0.7422 | 0.7469 |
2.7874 | 29100 | 0.0494 | - | - |
2.7970 | 29200 | 0.0423 | - | - |
2.8066 | 29300 | 0.0508 | - | - |
2.8162 | 29400 | 0.0459 | - | - |
2.8257 | 29500 | 0.0514 | - | - |
2.8353 | 29600 | 0.0484 | - | - |
2.8449 | 29700 | 0.0571 | - | - |
2.8545 | 29800 | 0.0558 | - | - |
2.8641 | 29900 | 0.0466 | - | - |
2.8736 | 30000 | 0.0465 | 0.7478 | 0.7447 |
2.8832 | 30100 | 0.0463 | - | - |
2.8928 | 30200 | 0.0362 | - | - |
2.9024 | 30300 | 0.0435 | - | - |
2.9119 | 30400 | 0.0419 | - | - |
2.9215 | 30500 | 0.046 | - | - |
2.9311 | 30600 | 0.0451 | - | - |
2.9407 | 30700 | 0.0458 | - | - |
2.9503 | 30800 | 0.052 | - | - |
2.9598 | 30900 | 0.0454 | - | - |
2.9694 | 31000 | 0.0433 | 0.7580 | 0.745 |
2.9790 | 31100 | 0.0438 | - | - |
2.9886 | 31200 | 0.0537 | - | - |
2.9982 | 31300 | 0.033 | - | - |
3.0077 | 31400 | 0.0384 | - | - |
3.0173 | 31500 | 0.0349 | - | - |
3.0269 | 31600 | 0.0365 | - | - |
3.0365 | 31700 | 0.0397 | - | - |
3.0460 | 31800 | 0.0396 | - | - |
3.0556 | 31900 | 0.0358 | - | - |
3.0652 | 32000 | 0.0443 | 0.7592 | 0.7454 |
3.0748 | 32100 | 0.0323 | - | - |
3.0844 | 32200 | 0.0418 | - | - |
3.0939 | 32300 | 0.0463 | - | - |
3.1035 | 32400 | 0.0397 | - | - |
3.1131 | 32500 | 0.0425 | - | - |
3.1227 | 32600 | 0.0406 | - | - |
3.1323 | 32700 | 0.0454 | - | - |
3.1418 | 32800 | 0.0287 | - | - |
3.1514 | 32900 | 0.0267 | - | - |
3.1610 | 33000 | 0.0341 | 0.7672 | 0.7431 |
3.1706 | 33100 | 0.0357 | - | - |
3.1802 | 33200 | 0.0322 | - | - |
3.1897 | 33300 | 0.0367 | - | - |
3.1993 | 33400 | 0.0419 | - | - |
3.2089 | 33500 | 0.0349 | - | - |
3.2185 | 33600 | 0.0327 | - | - |
3.2280 | 33700 | 0.0377 | - | - |
3.2376 | 33800 | 0.0353 | - | - |
3.2472 | 33900 | 0.0305 | - | - |
3.2568 | 34000 | 0.0362 | 0.7668 | 0.7463 |
3.2664 | 34100 | 0.0311 | - | - |
3.2759 | 34200 | 0.0405 | - | - |
3.2855 | 34300 | 0.0401 | - | - |
3.2951 | 34400 | 0.0361 | - | - |
3.3047 | 34500 | 0.0302 | - | - |
3.3143 | 34600 | 0.0379 | - | - |
3.3238 | 34700 | 0.03 | - | - |
3.3334 | 34800 | 0.039 | - | - |
3.3430 | 34900 | 0.0288 | - | - |
3.3526 | 35000 | 0.0318 | 0.7782 | 0.7436 |
3.3621 | 35100 | 0.0283 | - | - |
3.3717 | 35200 | 0.029 | - | - |
3.3813 | 35300 | 0.0287 | - | - |
3.3909 | 35400 | 0.0343 | - | - |
3.4005 | 35500 | 0.0326 | - | - |
3.4100 | 35600 | 0.031 | - | - |
3.4196 | 35700 | 0.0304 | - | - |
3.4292 | 35800 | 0.0314 | - | - |
3.4388 | 35900 | 0.0286 | - | - |
3.4484 | 36000 | 0.0229 | 0.7978 | 0.7428 |
3.4579 | 36100 | 0.0258 | - | - |
3.4675 | 36200 | 0.043 | - | - |
3.4771 | 36300 | 0.042 | - | - |
3.4867 | 36400 | 0.029 | - | - |
3.4963 | 36500 | 0.0343 | - | - |
3.5058 | 36600 | 0.0317 | - | - |
3.5154 | 36700 | 0.0307 | - | - |
3.5250 | 36800 | 0.0251 | - | - |
3.5346 | 36900 | 0.025 | - | - |
3.5441 | 37000 | 0.0309 | 0.8002 | 0.7446 |
3.5537 | 37100 | 0.031 | - | - |
3.5633 | 37200 | 0.0345 | - | - |
3.5729 | 37300 | 0.0332 | - | - |
3.5825 | 37400 | 0.0346 | - | - |
3.5920 | 37500 | 0.026 | - | - |
3.6016 | 37600 | 0.0293 | - | - |
3.6112 | 37700 | 0.0268 | - | - |
3.6208 | 37800 | 0.0264 | - | - |
3.6304 | 37900 | 0.0259 | - | - |
3.6399 | 38000 | 0.032 | 0.7896 | 0.7438 |
3.6495 | 38100 | 0.0246 | - | - |
3.6591 | 38200 | 0.0279 | - | - |
3.6687 | 38300 | 0.0274 | - | - |
3.6782 | 38400 | 0.0241 | - | - |
3.6878 | 38500 | 0.027 | - | - |
3.6974 | 38600 | 0.022 | - | - |
3.7070 | 38700 | 0.0305 | - | - |
3.7166 | 38800 | 0.0368 | - | - |
3.7261 | 38900 | 0.0304 | - | - |
3.7357 | 39000 | 0.0249 | 0.7978 | 0.7437 |
3.7453 | 39100 | 0.0312 | - | - |
3.7549 | 39200 | 0.0257 | - | - |
3.7645 | 39300 | 0.0273 | - | - |
3.7740 | 39400 | 0.0209 | - | - |
3.7836 | 39500 | 0.0298 | - | - |
3.7932 | 39600 | 0.0282 | - | - |
3.8028 | 39700 | 0.028 | - | - |
3.8124 | 39800 | 0.0279 | - | - |
3.8219 | 39900 | 0.0283 | - | - |
3.8315 | 40000 | 0.0239 | 0.7982 | 0.7424 |
3.8411 | 40100 | 0.0378 | - | - |
3.8507 | 40200 | 0.028 | - | - |
3.8602 | 40300 | 0.0321 | - | - |
3.8698 | 40400 | 0.0289 | - | - |
3.8794 | 40500 | 0.027 | - | - |
3.8890 | 40600 | 0.0224 | - | - |
3.8986 | 40700 | 0.0236 | - | - |
3.9081 | 40800 | 0.0267 | - | - |
3.9177 | 40900 | 0.0228 | - | - |
3.9273 | 41000 | 0.0322 | 0.8101 | 0.7415 |
3.9369 | 41100 | 0.0262 | - | - |
3.9465 | 41200 | 0.0276 | - | - |
3.9560 | 41300 | 0.0292 | - | - |
3.9656 | 41400 | 0.0278 | - | - |
3.9752 | 41500 | 0.0262 | - | - |
3.9848 | 41600 | 0.0306 | - | - |
3.9943 | 41700 | 0.0238 | - | - |
4.0039 | 41800 | 0.0165 | - | - |
4.0135 | 41900 | 0.0241 | - | - |
4.0231 | 42000 | 0.0211 | 0.8092 | 0.742 |
4.0327 | 42100 | 0.0257 | - | - |
4.0422 | 42200 | 0.0236 | - | - |
4.0518 | 42300 | 0.0254 | - | - |
4.0614 | 42400 | 0.0248 | - | - |
4.0710 | 42500 | 0.026 | - | - |
4.0806 | 42600 | 0.0245 | - | - |
4.0901 | 42700 | 0.0325 | - | - |
4.0997 | 42800 | 0.0209 | - | - |
4.1093 | 42900 | 0.033 | - | - |
4.1189 | 43000 | 0.0265 | 0.8105 | 0.7412 |
4.1285 | 43100 | 0.027 | - | - |
4.1380 | 43200 | 0.0208 | - | - |
4.1476 | 43300 | 0.0179 | - | - |
4.1572 | 43400 | 0.0194 | - | - |
4.1668 | 43500 | 0.0217 | - | - |
4.1763 | 43600 | 0.0212 | - | - |
4.1859 | 43700 | 0.0226 | - | - |
4.1955 | 43800 | 0.0252 | - | - |
4.2051 | 43900 | 0.0293 | - | - |
4.2147 | 44000 | 0.0216 | 0.8029 | 0.7414 |
4.2242 | 44100 | 0.029 | - | - |
4.2338 | 44200 | 0.0216 | - | - |
4.2434 | 44300 | 0.0251 | - | - |
4.2530 | 44400 | 0.018 | - | - |
4.2626 | 44500 | 0.025 | - | - |
4.2721 | 44600 | 0.0225 | - | - |
4.2817 | 44700 | 0.0303 | - | - |
4.2913 | 44800 | 0.028 | - | - |
4.3009 | 44900 | 0.0203 | - | - |
4.3104 | 45000 | 0.026 | 0.8081 | 0.7405 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.38.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for lv12/esci-nomic-embed-text-v1_5_1
Base model
nomic-ai/nomic-embed-text-v1.5Evaluation results
- Cosine Accuracy on triplet esciself-reported0.741
- Dot Accuracy on triplet esciself-reported0.269
- Manhattan Accuracy on triplet esciself-reported0.743
- Euclidean Accuracy on triplet esciself-reported0.746
- Max Accuracy on triplet esciself-reported0.746