Improve model card with metadata, description, and usage instructions

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +74 -170
README.md CHANGED
@@ -1,199 +1,103 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- This repository contains the Infinity-Instruct-3M-0625-Llama3-8B-COIG-P model of the paper [COIG-P: A High-Quality and Large-Scale Chinese Preference Dataset for Alignment with Human Values](https://huggingface.co/papers/2504.05535).
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ pipeline_tag: text-generation
3
  library_name: transformers
4
+ license: apache-2.0
5
+ tags:
6
+ - chinese
7
+ - instruction-following
8
  ---
9
 
10
+ ```markdown
11
+ # Model Card for Infinity-Instruct-3M-0625-Llama3-8B-COIG-P
 
 
12
 
13
+ This repository contains the Infinity-Instruct-3M-0625-Llama3-8B-COIG-P model, a large language model fine-tuned on the COIG-P dataset. COIG-P is a high-quality, large-scale Chinese preference dataset for aligning LLMs with human values. This model is described in the paper [COIG-P: A High-Quality and Large-Scale Chinese Preference Dataset for Alignment with Human Values](https://huggingface.co/papers/2504.05535).
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
 
19
+ This model was fine-tuned using an LLM-based Chinese preference dataset annotation pipeline to avoid human intervention. The pipeline crawled and filtered 9k high-quality Chinese queries and used 15 powerful LLMs to generate and score chosen-rejected response pairs. The resulting COIG-P dataset contains 101k Chinese preference pairs across 6 domains: Chat, Code, Math, Logic, Novel, and Role. This model is an 8B parameter Llama model.
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ ### Model Sources
22
 
23
+ - **Repository:** [https://github.com/MAP-Lab/COIG-P](https://github.com/MAP-Lab/COIG-P)
24
+ - **Paper:** [https://huggingface.co/papers/2504.05535](https://huggingface.co/papers/2504.05535)
 
25
 
26
  ## Uses
27
 
 
 
28
  ### Direct Use
29
 
30
+ This model can be used directly for text generation tasks, particularly those involving Chinese language and instruction following.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Bias, Risks, and Limitations
33
 
34
+ This model, like other LLMs, may exhibit biases present in its training data. It's crucial to be aware of potential biases related to the specific domains and language (Chinese) included in the COIG-P dataset. Further research is needed to fully characterize these biases.
 
 
35
 
36
  ### Recommendations
37
 
38
+ Users should be mindful of potential biases in the model's outputs and critically evaluate the generated text.
 
 
39
 
40
  ## How to Get Started with the Model
41
 
42
+ The following code snippet demonstrates how to use the model for text generation:
43
+
44
+ ```python
45
+ from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList
46
+ import torch
47
+ device = "cuda" # the device to load the model onto
48
+
49
+ model = AutoModelForCausalLM.from_pretrained("m-a-p/Infinity-Instruct-3M-0625-Llama3-8B-COIG-P",
50
+ torch_dtype=torch.bfloat16,
51
+ device_map="auto"
52
+ )
53
+ tokenizer = AutoTokenizer.from_pretrained("m-a-p/Infinity-Instruct-3M-0625-Llama3-8B-COIG-P")
54
+
55
+ prompt = "Give me a short introduction to large language model."
56
+ messages = [
57
+ {"role": "user", "content": prompt}
58
+ ]
59
+
60
+ text = tokenizer.apply_chat_template(
61
+ messages,
62
+ tokenize=False,
63
+ add_generation_prompt=True
64
+ )
65
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
66
+
67
+ logits_processor = LogitsProcessorList(
68
+ [
69
+ MinLengthLogitsProcessor(1, eos_token_id=tokenizer.eos_token_id),
70
+ TemperatureLogitsWarper(0.7),
71
+ ]
72
+ )
73
+
74
+ generated_ids = model.generate(
75
+ model_inputs.input_ids,
76
+ logits_processor=logits_processor,
77
+ max_new_tokens=512
78
+ )
79
+
80
+ generated_ids = [
81
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
82
+ ]
83
+
84
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
85
+ print(response)
86
+ ```
87
+
88
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
  **BibTeX:**
91
 
92
+ ```bibtex
93
+ @misc{pteam2025coigphighqualitylargescalechinese,
94
+ title={COIG-P: A High-Quality and Large-Scale Chinese Preference Dataset for Alignment with Human Values},
95
+ author={P Team and Siwei Wu and Jincheng Ren and Xinrun Du and Shuyue Guo and Xingwei Qu and Yiming Liang and Jie Liu and Yunwen Li and Tianyu Zheng and Boyu Feng and Huaqing Yuan and Zenith Wang and Jiaheng Liu and Wenhao Huang and Chenglin Cai and Haoran Que and Jian Yang and Yuelin Bai and Zekun Moore Wang and Zhouliang Yu and Qunshu Lin and Ding Pan and Yuchen Jiang and Tiannan Wang and Wangchunshu Zhou and Shenzhi Wang and Xingyuan Bu and Minghao Liu and Guoyin Wang and Ge Zhang and Chenghua Lin},
96
+ year={2025},
97
+ eprint={2504.05535},
98
+ archivePrefix={arXiv},
99
+ primaryClass={cs.CL},
100
+ url={https://arxiv.org/abs/2504.05535},
101
+ }
102
+ ```
103
+ ```