wandb: - 0.003 MB of 0.003 MB uploaded
wandb: \ 0.003 MB of 0.003 MB uploaded
wandb:                                                                                
wandb: 
wandb: Run history:
wandb:               eval/loss β–ˆβ–…β–…β–„β–ƒβ–‚β–‚β–‚β–‚β–‚β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–
wandb:            eval/runtime β–†β–ƒβ–ƒβ–β–‚β–…β–ˆβ–…β–„β–„β–„β–„β–„β–„β–…β–„β–†β–„β–‚β–…β–ƒβ–„β–†β–†β–‚β–†β–…
wandb: eval/samples_per_second β–ƒβ–†β–†β–ˆβ–‡β–„β–β–„β–…β–…β–…β–…β–…β–…β–„β–…β–ƒβ–…β–‡β–„β–†β–…β–ƒβ–ƒβ–‡β–ƒβ–„
wandb:   eval/steps_per_second β–ƒβ–†β–†β–ˆβ–‡β–„β–β–„β–„β–„β–…β–…β–„β–…β–„β–…β–ƒβ–†β–‡β–ƒβ–†β–…β–ƒβ–ƒβ–‡β–ƒβ–„
wandb:             train/epoch β–β–β–β–β–β–‚β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–…β–…β–…β–…β–…β–…β–…β–†β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆ
wandb:       train/global_step β–β–β–β–‚β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–„β–„β–„β–„β–…β–…β–…β–…β–…β–…β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆ
wandb:         train/grad_norm β–‡β–‚β–‚β–‚β–β–ƒβ–ˆβ–ƒβ–‚β–β–ƒβ–‚β–ƒβ–‚β–β–‚β–ƒβ–ƒβ–„β–ƒβ–‚β–ƒβ–ƒβ–ƒβ–„β–‚β–ƒβ–ƒβ–„β–ƒβ–‚β–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–…β–„β–ƒ
wandb:     train/learning_rate β–ˆβ–ˆβ–ˆβ–‡β–‡β–‡β–‡β–‡β–‡β–†β–†β–†β–†β–†β–…β–…β–…β–…β–…β–…β–„β–„β–„β–„β–„β–„β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–‚β–‚β–‚β–‚β–‚β–‚β–β–β–
wandb:              train/loss β–ˆβ–ƒβ–ƒβ–ƒβ–β–„β–‚β–‚β–ƒβ–β–ƒβ–‚β–‚β–‚β–β–ƒβ–‚β–‚β–β–ƒβ–‚β–‚β–‚β–β–ƒβ–‚β–‚β–‚β–β–ƒβ–‚β–‚β–‚β–ƒβ–β–‚β–‚β–β–ƒβ–
wandb: 
wandb: Run summary:
wandb:                eval/loss 0.92221
wandb:             eval/runtime 93.6611
wandb:  eval/samples_per_second 3.587
wandb:    eval/steps_per_second 1.196
wandb:               total_flos 2.952274602780672e+16
wandb:              train/epoch 2.46201
wandb:        train/global_step 810
wandb:          train/grad_norm 0.81067
wandb:      train/learning_rate 3e-05
wandb:               train/loss 0.7747
wandb:               train_loss 1.05936
wandb:            train_runtime 8326.639
wandb: train_samples_per_second 1.58
wandb:   train_steps_per_second 0.198

training_arguments = SFTConfig(
    output_dir=new_model,
    run_name="fine_tune_ocr_correction",
    per_device_train_batch_size=4,
    per_device_eval_batch_size=3,
    gradient_accumulation_steps=4,
    optim="paged_adamw_32bit",
    num_train_epochs=5, 
    eval_strategy="steps",
    eval_steps=30,  # normally 10 steps, but our dataset is small
    save_steps=30,
    logging_steps=20,  # Log progress every 20 steps
    warmup_steps=10,
    logging_strategy="steps",
    learning_rate=5e-5,
    fp16=use_fp16, 
    bf16=use_bf16,  
    group_by_length=True,
    report_to="wandb",
    max_seq_length=1220,
    save_strategy="steps",
    dataset_text_field="text",
    load_best_model_at_end = True
)

Llama-3.2-post-ocr-synthetic-data-2 (test on synth data, training on full corpus).json
Average PCIS: -0.06044562
Average Dataset CER: 0.09836092
Average Model CER: 0.15258657
Average Dataset WER: 0.21986217
Average Model WER: 0.80281940

Llama-3.2-post-ocr-synthetic-data-2 (test on real data, training on full corpus).json
Average PCIS: -0.00842250
Average Dataset CER: 0.01391665
Average Model CER: 0.02204702
Average Dataset WER: 0.06207812
Average Model WER: 0.10260357



Dataset complet 

Model Card for Model ID

Model Details

Model Description

This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .