File size: 8,379 Bytes
26a203c
 
 
 
663ba60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6928468
663ba60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c00e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663ba60
 
 
26a203c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
library_name: transformers
tags: []
---
```
wandb: - 0.003 MB of 0.003 MB uploaded
wandb: \ 0.003 MB of 0.003 MB uploaded
wandb:                                                                                
wandb: 
wandb: Run history:
wandb:               eval/loss β–ˆβ–…β–…β–„β–ƒβ–‚β–‚β–‚β–‚β–‚β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–β–
wandb:            eval/runtime β–†β–ƒβ–ƒβ–β–‚β–…β–ˆβ–…β–„β–„β–„β–„β–„β–„β–…β–„β–†β–„β–‚β–…β–ƒβ–„β–†β–†β–‚β–†β–…
wandb: eval/samples_per_second β–ƒβ–†β–†β–ˆβ–‡β–„β–β–„β–…β–…β–…β–…β–…β–…β–„β–…β–ƒβ–…β–‡β–„β–†β–…β–ƒβ–ƒβ–‡β–ƒβ–„
wandb:   eval/steps_per_second β–ƒβ–†β–†β–ˆβ–‡β–„β–β–„β–„β–„β–…β–…β–„β–…β–„β–…β–ƒβ–†β–‡β–ƒβ–†β–…β–ƒβ–ƒβ–‡β–ƒβ–„
wandb:             train/epoch β–β–β–β–β–β–‚β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–…β–…β–…β–…β–…β–…β–…β–†β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆ
wandb:       train/global_step β–β–β–β–‚β–‚β–‚β–‚β–‚β–‚β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–„β–„β–„β–„β–„β–…β–…β–…β–…β–…β–…β–†β–†β–†β–†β–‡β–‡β–‡β–‡β–‡β–ˆβ–ˆβ–ˆ
wandb:         train/grad_norm β–‡β–‚β–‚β–‚β–β–ƒβ–ˆβ–ƒβ–‚β–β–ƒβ–‚β–ƒβ–‚β–β–‚β–ƒβ–ƒβ–„β–ƒβ–‚β–ƒβ–ƒβ–ƒβ–„β–‚β–ƒβ–ƒβ–„β–ƒβ–‚β–ƒβ–ƒβ–ƒβ–ƒβ–„β–„β–…β–„β–ƒ
wandb:     train/learning_rate β–ˆβ–ˆβ–ˆβ–‡β–‡β–‡β–‡β–‡β–‡β–†β–†β–†β–†β–†β–…β–…β–…β–…β–…β–…β–„β–„β–„β–„β–„β–„β–ƒβ–ƒβ–ƒβ–ƒβ–ƒβ–‚β–‚β–‚β–‚β–‚β–‚β–β–β–
wandb:              train/loss β–ˆβ–ƒβ–ƒβ–ƒβ–β–„β–‚β–‚β–ƒβ–β–ƒβ–‚β–‚β–‚β–β–ƒβ–‚β–‚β–β–ƒβ–‚β–‚β–‚β–β–ƒβ–‚β–‚β–‚β–β–ƒβ–‚β–‚β–‚β–ƒβ–β–‚β–‚β–β–ƒβ–
wandb: 
wandb: Run summary:
wandb:                eval/loss 0.92221
wandb:             eval/runtime 93.6611
wandb:  eval/samples_per_second 3.587
wandb:    eval/steps_per_second 1.196
wandb:               total_flos 2.952274602780672e+16
wandb:              train/epoch 2.46201
wandb:        train/global_step 810
wandb:          train/grad_norm 0.81067
wandb:      train/learning_rate 3e-05
wandb:               train/loss 0.7747
wandb:               train_loss 1.05936
wandb:            train_runtime 8326.639
wandb: train_samples_per_second 1.58
wandb:   train_steps_per_second 0.198

training_arguments = SFTConfig(
    output_dir=new_model,
    run_name="fine_tune_ocr_correction",
    per_device_train_batch_size=4,
    per_device_eval_batch_size=3,
    gradient_accumulation_steps=4,
    optim="paged_adamw_32bit",
    num_train_epochs=5, 
    eval_strategy="steps",
    eval_steps=30,  # normally 10 steps, but our dataset is small
    save_steps=30,
    logging_steps=20,  # Log progress every 20 steps
    warmup_steps=10,
    logging_strategy="steps",
    learning_rate=5e-5,
    fp16=use_fp16, 
    bf16=use_bf16,  
    group_by_length=True,
    report_to="wandb",
    max_seq_length=1220,
    save_strategy="steps",
    dataset_text_field="text",
    load_best_model_at_end = True
)

Llama-3.2-post-ocr-synthetic-data-2 (test on synth data, training on full corpus).json
Average PCIS: -0.06044562
Average Dataset CER: 0.09836092
Average Model CER: 0.15258657
Average Dataset WER: 0.21986217
Average Model WER: 0.80281940

Llama-3.2-post-ocr-synthetic-data-2 (test on real data, training on full corpus).json
Average PCIS: -0.00842250
Average Dataset CER: 0.01391665
Average Model CER: 0.02204702
Average Dataset WER: 0.06207812
Average Model WER: 0.10260357



Dataset complet 
```


# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]